首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective glucose-free media have been used to study the reexpression of liver-specific gluconeogenic enzymes in rat hepatoma X mouse lymphoblastoma somatic hybrids. The utilization for gluconeogenesis of dihydroxyacetone or oxaloacetate requires two enzymes: fructose diphosphatase as well as either triokinase for the former or phosphoenolpyruvate carboxykinase for the latter. By sequential selection with these substrates, the reexpression of the three gluconeogenic enzymes has been dissociated. The reexpression of these enzymes is correlated with the loss of mouse chromosomes. In addition, the characterization of the parental forms of aldolase B, another liver-specific enzyme, shows that reexpression corresponds to the simultaneous production of the rat and mouse enzymes. These results demonstrate the chromosomal origin of extinction and suggest that activation of mouse silent genes which accompanies reexpression can occur without loss of the parental determinations. The hypothesis that determination involves regulatory rather than structural genes is discussed.  相似文献   

2.
Curcumin, the bioactive component of curry spice turmeric, and its related structures possess potent anti-oxidant and anti-inflammatory properties. Several lines of evidence suggest that curcumin may play a beneficial role in animal models of diabetes, both by lowering blood glucose levels and by ameliorating the long-term complications of diabetes. However, current understanding of the mechanism of curcumin action is rudimentary and is limited to its anti-oxidant and anti-inflammatory effects. In this study we examine potential anti-diabetic mechanisms of curcumin, curcumin C3 complex®, and tetrahydrocurcuminoids (THC). Curcuminoids did not exert a direct effect on receptor tyrosine kinase activity, 2-deoxy glucose uptake in L6-GLUT4myc cells, or intestinal glucose metabolism measured by DPP4/α-glucosidase inhibitory activity. We demonstrate that curcuminoids effectively suppressed dexamethasone-induced phosphoenol pyruvate carboxy kinase (PEPCK) and glucose6-phosphatase (G6Pase) in H4IIE rat hepatoma and Hep3B human hepatoma cells. Furthermore, curcuminoids increased the phosphorylation of AMP-activated protein kinase (AMPK) and its downstream target acetyl-CoA carboxylase (ACC) in H4IIE and Hep3B cells with 400 times (curcumin) to 100,000 times (THC) the potency of metformin. These results suggest that AMPK mediated suppression of hepatic gluconeogenesis may be a potential mechanism mediating glucose-lowering effects of curcuminoids.  相似文献   

3.
4.
Histone deacetylase inhibitors with anticancer or anti-inflammatory activity bind to Class I or Class I and II HDAC enzymes. Here we compare selectivity of inhibitors of a Class II HDAC enzyme (HDAC6) and find one that retains high selectivity in macrophages.  相似文献   

5.
Yeast mutants blocked at different steps of the glycolytic pathways have been used to study the inactivation of several gluconeogenic enzymes upon addition of sugars. While phosphorylation of the sugars appears a requisite for the inactivation of fructose 1,6-bisphosphatase and phosphoenol-pyruvate carboxykinase, malate dehydrogenase is inactivated by fructose in mutants lacking hexokinase. The normal inactivation elicited by glucose in a mutant lacking phosphofructokinase indicates that the process does not require metabolism of the sugar beyond hexose monophosphates. A possible role for ATP in the inactivation process is suggested.  相似文献   

6.
7.
A selective stain for mast cells in tissue sections is presented. The procedure is based on the resistance to destaining with absolute ethanol-acetic acid of the complex acid mucopolysaccharide-Toluidine Blue reinforced with ferrioxamine B.  相似文献   

8.
9.
10.
11.
12.
13.
1. Specific glucose-6-phosphatase and fructose-1,6-diphosphatase activity were found to be biochemically compartmentalized in four parts of the brain in nine nutritionally important fishes. 2. Glucose-6-phosphatase and fructose-1,6-diphosphatase activity were highest in the cerebrum and lowest in the cerebellum. 3. Piscivorous fishes had the highest gluconeogenic enzyme content, followed by catfishes and major carps. 4. After the liver and muscles, the various parts of the brain play an important role in carbohydrate metabolism. 5. A direct relationship between the stage of evolution and elevation of gluconeogenic enzyme levels was observed. 6. It is evident from the results and the discussion that evolution modifies the biochemical organization of fishes in general and of their brain in particular.  相似文献   

14.
15.
By baiting litter soils with raw potatoes, species of bacilli producing thermostable amylases and raw starch-degrading amylase were selectively isolated.  相似文献   

16.
17.
18.
19.
A deoxyribonuclease has been purified 950-fold from rat ascites hepatoma cells and has been separated from another deoxyribonuclease that appears to have DNase III type activity. The enzyme preferentially degrades single stranded poly(dT), requires Mg2+ for maximum activity and has a pH optimum at 8.5 in Tris-HCl buffer. Poly(dA), poly(dC), poly(rA), and poly(rU) are not effective substrates. The hydrolysis of poly(dT) is strongly inhibited when poly(dA) or poly(rA) is annealed with poly(dT). Poly(dT) is degraded ultimately into 5′-deoxythymidylic acid via the formation of oligodeoxythymidylate intermediates.  相似文献   

20.
(1) The rate of palmitate oxidation in the 7800 C1 Morris hepatoma cells was about 60% of the activity observed in hepatocytes. The stimulatory effect of glucagon in hepatocytes was not observed in the hepatoma cells. The rate of fatty acid synthesis from [2-14C]acetate in the hepatoma cells was 1/20 of the activity in hepatocytes. The conversion of [2-14C]acetate to cholesterol was not different in the two kinds of cell. (2) Acetyl-CoA carboxylase and fatty acid synthetase were significantly decreased in the hepatoma cells. The hepatoma cells had, however, raised activities of malate dehydrogenase (decarboxylating), and glucose-6-phosphate and 6-phosphogluconate dehydrogenases. (3) The activities of the enzymes were not affected by different concentrations of glucose or palmitate in the culture medium. Insulin, dexamethasone, triiothyronine and glucagon had no effect on the enzyme activities. This is in contrast to the adaptation of the peroxisomal beta-oxidation system, which is induced by fatty acids and modified by hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号