首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substrate-induced conformational change of the truncated C-terminal catalytic domain (CAT) of Geobacillus stearothermophilus lysyl-tRNA synthetase was examined by measuring tryptophan fluorescence of the truncated CAT domain in the presence or absence of the truncated N-terminal tRNA anticodon-binding domain (TAB). The fluorescence spectrum of CAT was not changed by the addition of l-lysine or ATP, whereas the intensity increased by adding a lysyl-adenylate analogue, suggesting that the CAT fluorescence increases when lysyl-adenylate is formed in the active site of CAT in l-lysine activation. In the presence of TAB, the addition of l-lysine to CAT decreased the fluorescence, and the subsequent addition of ATP recovered partially the decreased intensity, as is similar to the case of the intact enzyme. The static parameters of the CAT-TAB complex were similar to those of the intact enzyme, suggesting that a somewhat impaired structure of CAT is repaired on the formation of the complex with TAB. The mutational analysis of the fluorescence showed that Trp314 but not Trp332 is responsible for the observed fluorescence changes. The role of the TAB domain in the intact enzyme is considered to enhance the binding efficiency of lysyl-adenylate to the CAT domain.  相似文献   

2.
We investigated the structure of the active RecA-DNA complex by analyzing the environment of tyrosine residue 65, which is on the DNA-binding surface of the protein. We prepared a modified RecA protein in which the tyrosine residue was replaced by tryptophan, a natural fluorescent reporter, and measured the change in its fluorescence upon binding of DNA and cofactor. The fluorescence of the inserted tryptophan 65 (Trp65) was centered at 345 nm, indicating a partly exposed residue. Binding cofactor, adenosine 5'-O-3-thiotriphosphate (ATPgammaS), alone at a low salt concentration did not change the fluorescence of Trp65, confirming that the residue is not close to the nucleotide. In contrast, the binding of single-stranded DNA quenched the fluorescence of Trp65 in both the presence and absence of ATPgammaS. Trp65 fluorescence was also quenched upon binding a second DNA strand. The fluorescence change depended upon the presence and absence of ATPgammaS, reflecting the difference in the DNA binding. These results indicate that residue 65 is close to both the first and second DNA strands. The degree of quenching depended upon the base composition of DNA, suggesting that the residue 65 interacts with the DNA bases. Binding of DNA with ATPgammaS as well as binding of ATPgammaS alone at high salt concentration shifted the fluorescence emission peak from 345 to 330 nm, indicating a change from a polar to a non-polar environment. Therefore, the environment change around residue 65 would also be linked to a change in conformation and thus the activation of the protein.  相似文献   

3.
Imhof N  Kuhn A  Gerken U 《Biochemistry》2011,50(15):3229-3239
The binding of Pf3 coat protein to the membrane insertase YidC from Escherichia coli induces a conformational change in the tertiary structure of the insertase, resulting in a quenching of the intrinsic tryptophan (Trp) fluorescence. Tryptophan mutants of YidC were generated to examine such conformational movements in detail with time-resolved and steady-state fluorescence spectroscopy. Ten of the 11 Trp residues within YidC were substituted to phenylalanines generating single Trp mutants either at position 354, 454, or 508. In addition, a double mutant with Trp residues at 332 and 334 was studied. Purified YidC mutants were reconstituted into DOPC/DOPG vesicles and titrated with a Trp-free mutant of Pf3 coat, enabling a detailed conformational study of the periplasmic P1, P2, and P3 domains of YidC before and after binding of substrate. Time-resolved fluorescence anisotropy revealed that the mobility of the residues W332/W334 and W508 was considerably increased after binding of Pf3 coat to the insertase. Furthermore, analysis of the fluorescence emission spectra and the decay times showed that all Trp residues are embedded in an equivalent environment that is a membrane/water interface.  相似文献   

4.
Structural analyses of several bacterial ATP-binding cassette (ABC) transporters indicate that an aromatic amino acid residue in a nucleotide-binding domain (NBD) interacts with the adenine ring of the bound ATP and contributes to the ATP binding. Substitution of this aromatic residue with a polar serine residue in bacterial histidine transporter completely abolished both ATP binding and ATP-dependent histidine transport. However, substitution of the aromatic amino acid residue in the human cystic fibrosis transmembrane conductance regulator with a polar cysteine residue did not have any effect on the ATP-dependent chloride channel function of the protein. To determine whether the other eucaryotic ABC transporters use the strategy analogous to that in some bacterial ABC transporters, the aromatic Trp653 residue in NBD1 and the Tyr1302 residue in NBD2 of human multidrug resistance-associated protein 1 (MRP1) was mutated to either a different aromatic residue or a polar cysteine residue. Substitution of the aromatic residue with a different aromatic amino acid, such as W653Y or Y1302W, did not affect ATP-dependent leukotriene C4 (LTC4) transport. In contrast, substitution of the aromatic residue with a polar cysteine residue, such as W653C or Y1302C, decreased the affinity for ATP, resulting in greatly increased Kd values for ATP binding or Km values for ATP in ATP-dependent LTC4 transport. Interestingly, although substitution of the aromatic Trp653 in NBD1 of MRP1 with a polar cysteine residue greatly decreases the affinity for ATP, the ATP-dependent LTC4 transport activities are much higher than that of wild-type MRP1, supporting our hypothesis that the increased release rate of the bound ATP from the mutated NBD1 facilitates the protein to start a new cycle of ATP-dependent solute transport.  相似文献   

5.
Site-directed mutagenesis on human cytidine deaminase (CDA) was employed to mutate specifically two highly conserved phenylalanine residues, F36 and F137, to tryptophan; at the same time, the unique tryptophan residue present in the sequence at position 113 was mutated to phenylalanine. These double mutations were performed in order to have for each protein a single tryptophan signal for fluorescence studies relative to position 36 or 137. The mutant enzymes thus obtained, W113F, F36W/W113F and F137W/W113F, showed by circular dicroism and thermal stability an overall structure not greatly affected by the mutations. The titration of Trp residues by N-bromosuccinimide (NBS) suggested that residue W113 of the wild-type CDA and W36 of mutant F36W/W113F are buried in the tertiary structure of the enzyme, whereas the residue W137 of mutant F137W/W113F is located near the surface of the molecule. Kinetic experiments and equilibrium experiments with FZEB showed that the residue W113 seems not to be part of the active site of the enzyme whereas the Phe/Trp substitution in F36W/W113F and F137W/W113F mutant enzymes had a negative effect on substrate binding and catalysis, suggesting that F137 and F36 of the wild-type CDA are involved in a stabilizing interaction between ligand and enzyme.  相似文献   

6.
W C Lam  A H Maki  T Itoh  T Hakoshima 《Biochemistry》1992,31(29):6756-6760
Phosphorescence and ODMR measurements have been made on ribonuclease T1 (RNase T1), the mutated enzyme RNase T1 (Y45W), and their complexes with 2'GMP and 2'AMP. It is not possible to observe the phosphorescence of Trp45 in RNase T1 (Y45W). Only that of the naturally occurring Trp59 is seen. The binding of 2'GMP to wild-type RNase T1 produces only a minor red shift in the phosphorescence and no change in the ODMR spectrum of Trp59. However, a new tryptophan 0,0-band is found 8.2 nm to the red of the Trp59 0,0-band in the 2'GMP complex of the mutated RNase T1 (Y45W). Wavelength-selected ODMR measurements reveal that the red-shifted emission induced by 2'GMP binding, assigned to Trp45, occurs from a residue with significantly different zero-field splittings than those of Trp59, a buried residue subject to local polar interactions. The phosphorescence red shift and the zero-field splitting parameters demonstrate that Trp45 is located in a polarizable environment in the 2'GMP complex. In contrast with 2'GMP, binding of 2'AMP to RNase T1 (Y45W) induces no observable phosphorescence emission from Trp45, but leads only to a minor red shift in the phosphorescence origin of Trp59 in both the mutated and wild-type enzyme. The lack of resolved phosphorescence emission from Trp45 in RNase T1 (Y45W) implies that the emission of this residue is quenched in the uncomplexed enzyme. We conclude that local conformational changes that occur upon binding 2'GMP remove quenching residues from the vicinity of Trp45, restoring its luminescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Goat alpha-lactalbumin (GLA) contains four tryptophan (Trp) residues. In order to obtain information on the fluorescence contribution of the individual Trp residues in native GLA, we recorded the fluorescence spectra of four GLA mutants, W26F, W60F, W104F, and W118F, in each of which a single Trp residue was replaced with phenylalanine (Phe). Comparison of the fluorescence spectra of the four mutants with that of wild-type GLA indicated that, in native GLA, three Trp residues (Trp60, Trp104, and Trp118) are strongly quenched and account for the partial indirect quenching of Trp26. As a consequence, the fluorescence of wild-type GLA and of the mutants W60F, W104F, and W118F mainly results from Trp26. An inspection of the crystal structure indicated that, in addition to the disulfide bonds that are in direct contact with the indole groups of Trp60 and Trp118, backbone peptide bonds that are in direct contact with the indole groups of Trp60, Trp104, and Trp118, contribute to the direct quenching effects. Interestingly, the lack of direct quenching of Trp26 explains why the cleavage of disulfide bonds by UV light is mediated more by the highly fluorescent Trp26 than by the less fluorescent Trp104 and Trp118.  相似文献   

8.
Rai V  Shukla S  Jha S  Komath SS  Prasad R 《Biochemistry》2005,44(17):6650-6661
Using purified N-terminal NBD (NBD-512) domain of Cdr1p, a major multidrug extrusion pump of human pathogenic yeast Candida albicans, we show the relevance of the unique positioning of an atypical Trp326 residue. Similar to Cys193 in Walker A, Trp326 in the Walker B motif of Cdr1p is also a conserved feature of other fungal ATP Binding Cassette (ABC) transporters. By employing fluorescence spectroscopy, chemical modification, and site-directed mutagenesis, we demonstrate that of the five Trp residues in the NBD-512 domain, Trp326 alone is important for nucleotide binding and subsequent conformational changes within the domain. Furthermore, mutation of Trp326 to Ala results in an increased K(M) without appreciably affecting V(max) of ATPase activity. Thus, Trp326 in NBD-512 appears to be important for nucleotide binding and not for its hydrolysis. Additionally, the role of Trp326 in ATP binding is independent of the presence of the adjacent well-conserved Asp327 residue which, like Cys193, has a catalytic role in ATP hydrolysis. Considering that Trp326 of Cdr1p is a typical feature of fungal transporters alone, our study suggests that these ABC transporters may reflect mechanistic differences with regard to nucleotide binding and hydrolysis as compared to their counterparts of non-fungal origin.  相似文献   

9.
10.
Plasmodium falciparum triosephosphate isomerase (PfTIM) contains two tryptophan residues, W11 and W168. One is positioned in the interior of the protein, and the other is located on the active-site loop 6. Two single-tryptophan mutants, W11F and W168F, were constructed to evaluate the contributions of each chromophore to the fluorescence of the wild-type (wt) protein and to probe the utility of the residues as spectroscopic reporters. A comparative analysis of the fluorescence spectra of PfTIMwt and the two mutant proteins revealed that W168 possesses an unusual, blue-shifted emission (321 nm) and exhibits significant red-edge excitation shift of fluorescence. In contrast, W11 emits at 332 nm, displays no excitation dependence of fluorescence, and behaves like a normal buried chromophore. W168 has a much shorter mean lifetime (2.7 ns) than W11 (4.6 ns). The anomalous fluorescence properties of W168 are abolished on unfolding of the protein in guanidinium chloride (GdmCl) or at low pH. Analysis of the tryptophan environment using a 1.1-A crystal structure established that W168 is rigidly held by a complex network of polar interactions including a strong hydrogen bond from Y164 to the indole NH group. The environment is almost completely polar, suggesting that electrostatic effects determine the unusually low emission wavelength of W168. To our knowledge this is a unique observation of a blue-shifted emission from a tryptophan in a polar environment in the protein. The wild-type and mutant proteins show similar levels of enzymatic activity and secondary and tertiary structure. However, the W11F mutation appreciably destabilizes the protein to unfolding by urea and GdmCl. The fluorescence of W168 is shown to be extremely sensitive to binding of the inhibitor, 2-phosphoglycolic acid.  相似文献   

11.
Motor proteins, myosin, and kinesin have gamma-phosphate sensors in the switch II loop that play key roles in conformational changes that support motility. Here we report that a rotary motor, F1-ATPase, also changes its conformations upon phosphate release. The tryptophan mutation was introduced into Arg-333 in the beta subunit of F1-ATPase from thermophilic Bacillus PS3 as a probe of conformational changes. This residue interacts with the switch II loop (residues 308-315) of the beta subunit in a nucleotide-bound conformation. The addition of ATP to the mutant F1 subcomplex alpha3beta(R333W)3gamma caused transient increase and subsequent decay of the Trp fluorescence. The increase was caused by conformational changes on ATP binding. The rate of decay agreed well with that of phosphate release monitored by phosphate-binding protein assays. This is the first evidence that the beta subunit changes its conformation upon phosphate release, which may share a common mechanism of exerting motility with other motor proteins.  相似文献   

12.
A structural feature shared by the metallo-beta-lactamases is a flexible loop of amino acids that extends over their active sites and that has been proposed to move during the catalytic cycle of the enzymes, clamping down on substrate. To probe the movement of this loop (residues 152-164), a site-directed mutant of metallo-beta-lactamase L1 was engineered that contained a Trp residue on the loop to serve as a fluorescent probe. It was necessary first, however, to evaluate the contribution of each native Trp residue to the fluorescence changes observed during the catalytic cycle of wild-type L1. Five site-directed mutants of L1 (W39F, W53F, W204F, W206F, and W269F) were prepared and characterized using metal analyses, CD spectroscopy, steady-state kinetics, stopped-flow fluorescence, and fluorescence titrations. All mutants retained the wild-type tertiary structure and bound Zn(II) at levels comparable with wild type and exhibited only slight (<10-fold) decreases in k(cat) values as compared with wild-type L1 for all substrates tested. Fluorescence studies revealed a single mutant, W39F, to be void of the fluorescence changes observed with wild-type L1 during substrate binding and catalysis. Using W39F as a template, a Trp residue was added to the flexile loop over the active site of L1, to generate the double mutant, W39F/D160W. This double mutant retained all the structural and kinetic characteristics of wild-type L1. Stopped-flow fluorescence and rapid-scanning UV-visible studies revealed the motion of the loop (k(obs) = 27 +/- 2 s(-1)) to be similar to the formation rate of a reaction intermediate (k(obs) = 25 +/- 2 s(-1)).  相似文献   

13.
Tryptophan fluorescence was used to study GK (glucokinase), an enzyme that plays a prominent role in glucose homoeostasis which, when inactivated or activated by mutations, causes diabetes mellitus or hypoglycaemia in humans. GK has three tryptophan residues, and binding of D-glucose increases their fluorescence. To assess the contribution of individual tryptophan residues to this effect, we generated GST-GK [GK conjugated to GST (glutathione transferase)] and also pure GK with one, two or three of the tryptophan residues of GK replaced with other amino acids (i.e. W99C, W99R, W167A, W167F, W257F, W99R/W167F, W99R/W257F, W167F/W257F and W99R/W167F/W257F). Enzyme kinetics, binding constants for glucose and several other sugars and fluorescence quantum yields (varphi) were determined and compared with those of wild-type GK retaining its three tryptophan residues. Replacement of all three tryptophan residues resulted in an enzyme that retained all characteristic features of GK, thereby demonstrating the unique usefulness of tryptophan fluorescence as an indicator of GK conformation. Curves of glucose binding to wild-type and mutant GK or GST-GK were hyperbolic, whereas catalysis of wild-type and most mutants exhibited co-operativity with D-glucose. Binding studies showed the following order of affinities for the enzyme variants: N-acetyl-D-glucosamine>D-glucose>D-mannose>D-mannoheptulose>2-deoxy-D-glucose>L-glucose. GK activators increased sugar binding of most enzymes, but not of the mutants Y214A/V452A and C252Y. Contributions to the fluorescence increase from Trp(99) and Trp(167) were large compared with that from Trp(257) and are probably based on distinct mechanisms. The average quantum efficiency of tryptophan fluorescence in the basal and glucose-bound state was modified by activating (Y214A/V452A) or inactivating (C213R and C252Y) mutations and was interpreted as a manifestation of distinct conformational states.  相似文献   

14.
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 is a homotetrameric protein containing four tryptophan residues per subunit. The fluorescence properties of the enzyme are strongly influenced by halide binding. To examine the role of the tryptophans (W139, W192, W238, and W249) in halide binding and catalysis, they were individually mutated to a phenylalanine. All mutations, except for W238F, influenced the enzymatic properties. Mutating W192 to phenylalanine inactivated the enzyme and led to dissociation into dimers and monomers. In the structure of HheC, residue W139 and residue W249 from the opposite subunit are close to the active site of the enzyme. Substitution of W139 mainly affected K(m) values with all tested substrates and reduced the enantiopreference for p-nitro-2-bromo-1-phenylethanol. Replacing W249 increased both k(cat) and K(m) values with all tested substrates except for the (S)-enantiomer of p-nitro-2-bromo-1-phenylethanol, for which k(cat) was 3-fold decreased, resulting in a 6-fold increase of the enantioselectivity. Fluorescence measurements revealed that in the ligand-free state the intrinsic protein fluorescence of mutant W139F is higher than that of the wild-type enzyme, while the fluorescence intensity of mutants W238F and W249F was lower. The fluorescence intensities of the W238F and W249F enzymes were increased when they were unfolded or when bromide was added, whereas the fluorescence of mutant W139F was not increased by unfolding or addition of bromide. These results demonstrate that the fluorescence of residues W238 and W249 is partially quenched in the folded ligand-free state, and that W139 is completely quenched and acts as an energy acceptor for the other tryptophan residues as well. Changes of the maximum fluorescence emission wavelength of the HheC variants and the results of acrylamide quenching experiments confirmed that bromide binding induces a local conformational change around the active site, resulting in residue W139 and the quencher group being separated.  相似文献   

15.
Nolan V  Perduca M  Monaco HL  Montich GG 《Biochemistry》2005,44(23):8486-8493
Chicken liver bile acid-binding protein (formerly known as chicken liver basic fatty acid-binding protein) binds to anionic lipid membranes acquiring a partly folded state [Nolan, V., Perduca, M., Monaco, H., Maggio, B., and Montich, G. (2003) Biochim. Biophys. Acta 1611, 98-106]. To understand the mechanisms of its interactions with membranes, we have investigated the presence of partly folded states in solution. Using fluorescence spectroscopy of the single Trp residue, circular dichroism in the far- and near-UV, Fourier transform infrared spectroscopy, and size-exclusion chromatography, we found that L-BABP was partly unfolded at pH 2.5 and low ionic strength, retaining some of its secondary structure. Addition of 0.1 M NaCl at pH 2.5 or decreasing the pH to 1.5 produced a more compact partly folded state, with a partial increase of secondary structure and none of tertiary structure. Fluorescence emission spectra of this state indicate that the Trp residue is within an environment of low polarity, similar to the native state. This environment is not produced by the insertion of the Trp into soluble aggregates as revealed by size-exclusion chromatography, fluorescence anisotropy, and infrared spectroscopy. The presence of partly folded states under acidic conditions in solution suggests the possibility that membrane binding of L-BABP occurs via this state.  相似文献   

16.
West FW  Seo HS  Bradrick TD  Howell EE 《Biochemistry》2000,39(13):3678-3689
R67 dihydrofolate reductase (DHFR) is an R-plasmid-encoded enzyme that confers clinical resistance to the antibacterial drug trimethoprim. This enzyme shows no sequence or structural homology to the chromosomal DHFRs. The active form of the protein is a homotetramer possessing D(2) symmetry and a single active-site pore. Two tryptophans occur per monomer: W38 and its symmetry-related residues (W138, W238, and W338) occur at the dimer-dimer interfaces, while W45 and its symmetry-related partners (W145, W245, and W345) occur at the monomer-monomer interfaces. Two single-tryptophan mutant genes were constructed to determine the structural and functional consequences of four mutations per tetramer. The W45F mutant retains full enzyme activity and the fluorescence environment of the unmutated W38 residues clearly monitors ligand binding and a pH dependent tetramer right harpoon over left harpoon 2 dimers equilibrium. In contrast, four simultaneous W38F mutations at the dimer-dimer interfaces result in tetramer destabilization. The ensuing dimer is relatively inactive, as is dimeric wild-type R67 DHFR. A comparison of emission spectra indicates the fluorescent signal of wild-type R67 DHFR is dominated by the contribution from W38. Equilibrium unfolding/folding curves at pH 5.0, where all protein variants are dimeric, indicate the environment monitored by the W38 residue is slightly less stable than the environment monitored by the W45 residue.  相似文献   

17.
W C Lam  D H Tsao  A H Maki  K A Maegley  N O Reich 《Biochemistry》1992,31(43):10438-10442
The interactions of an arsenic (III) reagent, (CH3)2AsSCH2CONH2, with two Escherichia coli RI methyltransferase mutants, W183F and C223S, have been studied by phosphorescence, optically detected magnetic resonance, and fluorescence spectroscopy. The phosphorescence spectrum of the W183F mutant containing only one tryptophan at position 225 reveals a single 0,0-band that is red-shifted by 9.8 nm upon binding of As(III). Fluorescence titration of W183F with (CH3)2AsSCH2CONH2 produces a large tryptophan fluorescence quenching. Analysis of the quenching data points to a single high-affinity As(III) binding site that is associated with the fluorescence quenching. Triplet-state kinetic measurements performed on the perturbed tryptophan show large reductions in the lifetimes of the triplet sublevels, especially that of the T chi sublevel. As(III) binding to the enzyme at a site very close to the Trp225 residue induces an external heavy-atom effect, showing that the perturber atom is in van der Waals contact with the indole chromophore. In the case of the C223S mutant, a single tryptophan 0,0-band also is observed in the phosphorescence spectrum, but no change occurs upon addition of the As(III) reagent. Fluorescence titration of C223S with As(III) shows essentially no quenching of tryptophan fluorescence, in contrast with W183F. These results, along with previous triplet-state and biochemical studies on the wild-type enzyme [Tsao, D. H.H., & Maki, A. H. (1991) Biochemistry 30, 4565-4572], show that As(III) binds with high affinity to the Cys223 residue and that the Trp225 side chain is located close enough to that of Cys223 to produce a heavy-atom perturbation when As(III) is bound.  相似文献   

18.
UDP-Galactopyranose mutase (UGM) is a flavoenzyme that catalyzes interconversion of UDP-galactopyranose (UDP-Galp) and UDP-galactofuranose (UDP-Galf); its activity depends on FAD redox state. The enzyme is vital to many pathogens, not native to mammals, and is an important drug target. We have probed binding of substrate, UDP-Galp, and UDP to wild type and W160A UGM from K. pneumoniae, and propose that substrate directs recognition loop dynamics by bridging distal FAD and W160 sites; W160 interacts with uracil of the substrate and is functionally essential. Enhanced Trp fluorescence upon substrate binding to UGM indicates conformational changes remote from the binding site because the fluorescence is unchanged upon binding to W70F/W290F UGM where W160 is the sole Trp. MD simulations map these changes to recognition loop closure to coordinate substrate. This requires galactose-FAD interactions as Trp fluorescence is unchanged upon substrate binding to oxidized UGM, or binding of UDP to either form of the enzyme, and MD show heightened recognition loop mobility in complexes with UDP. Consistent with substrate-directed loop closure, UDP binds 10-fold more tightly to oxidized UGM, yet substrate binds tighter to reduced UGM. This requires the W160-U interaction because redox-switched binding affinity of substrate reverses in the W160A mutant where it only binds when oxidized. Without the anchoring W160-U interaction, an alternative binding mode for UDP is detected, and STD-NMR experiments show simultaneous binding of UDP-Galp and UDP to different subsites in oxidized W160A UGM: Substrate no longer directs recognition loop dynamics to coordinate tight binding to the reduced enzyme.  相似文献   

19.
Previous studies showed that modification of an average of one of the three tryptophan residues of succinyl-CoA synthetase of Escherichia coli abolished enzyme activity, but did not prevent phosphorylation of the enzyme by ATP [Ybarra, J., Prasad, A. R. S., & Nishimura, J.S. (1986) Biochemistry 25, 7174-7178]. In the present study, single mutations in which each of the three tryptophans (beta-Trp43, beta-Trp76, and beta-Trp248) has been changed to phenylalanine (designated W43F, W76F, and W248F) have been accomplished by the technique of site-directed mutagenesis and the mutant proteins isolated. In addition, a double mutant in which beta-Trp43 and beta-Trp248 were changed to phenylalanines (W43,248F) has also been isolated. Each of the mutant enzymes was practically as active as wild type. Since the emission spectrum of beta-Trp76 reflected a low fluorescence intensity for this residue, it was possible to obtain the emission spectrum of each tryptophan residue by using W43F, W248F, and W43,248F. From the positions of the emission maxima and the results of iodide quenching of fluorescence, it was deduced that beta-Trp248 is a surface residue, beta-Trp43 is buried, and beta-Trp76 is intermediate in location. Coenzyme A, but no other substrate, protected the fluorescence of beta-Trp76 and beta-Trp248, but not of beta-Trp43, against quenching by acrylamide. These results are consistent with an interaction between beta-Trp76 and beta-Trp248 and the binding site for CoA.  相似文献   

20.
Patterson-Ward J  Huang J  Lee I 《Biochemistry》2007,46(47):13593-13605
Lon is an ATP dependent serine protease responsible for degrading denatured, oxidatively damaged and certain regulatory proteins in the cell. In this study we exploited the fluorescence properties of a dansylated peptide substrate (S4) and the intrinsic Trp residues in Lon to monitor peptide interacting with the enzyme. We generated two proteolytically inactive Lon mutants, S679A and S679W, where the active site serine is mutated to an Ala and Trp residue, respectively. Stopped-flow fluorescence spectroscopy was used to identify key enzyme intermediates generated along the reaction pathway prior to peptide hydrolysis. A two-step peptide binding event is detected in both mutants, where a conformational change occurs after a rapid equilibrium peptide binding step. The Kd for the initial peptide binding step determined by kinetic and equilibrium binding techniques is approximately 164 micromolar and 38 micromolar, respectively. The rate constants for the conformational change detected in the S679A and S679W Lon mutants are 0.74 +/- 0.10 s(-1) and 0.57 +/- 0.10 s(-1), respectively. These values are comparable to the lag rate constant determined for peptide hydrolysis (klag approximately 1 s(-1)) [Vineyard, D., et al. (2005) Biochemistry 45, 4602-4610]. Replacement of the active site Ser with Trp (S679W) allows for the detection of an ATP-dependent conformational change within the proteolytic site. The rate constant for this conformational change is 7.6 +/- 1.0 s(-1), and is essentially identical to the burst rate constant determined for ATP hydrolysis under comparable reaction conditions. Collectively, these kinetic data support a mechanism by which the binding of ATP to an allosteric site on Lon activates the proteolytic site. In this model, the energy derived from the binding of ATP minimally supports peptide cleavage by allowing peptide substrate access to the proteolytic site. However, the kinetics of peptide cleavage are enhanced by the hydrolysis of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号