首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interneuronal connections in ganglia of the caudal part of the hen intestinal nerve of Remak are presented as axodendritic and axosomatic synapses and symmetric axo-axonal, dendro-dendritic and axodendritic contacts, often forming complicated complexes. Under conditions of preliminary decentralization or under certain disturbances of nervous connections with the intestine, a part of synapses remains, and a part of them degenerates, this demonstrates participation of peripheral afferent neurons in formation of the synaptic apparatus of the ganglia mentioned. The axonal terminals differentiate by composition of the synaptic vesicles: some contain mainly light agranular vesicles, others--a large amount of granular ones. The characteristic peculiarities of the hen intestinal nerve ganglia, in contrast to analogous mammalian ganglia, are abundant axosomatic synapses in some neurons, and presynaptic terminals, containing a large number of granular vesicles.  相似文献   

2.
E Fehér  J Vajda 《Acta anatomica》1979,104(3):340-348
The interneuronal synapses of the urinary bladder in the cat were studied by electron microscopy. The great majority of the fibres containing vesicles are found within the ganglia occurring in the trigonum area. Morphologically differentiated synaptic contacts could be observed on the surface of the local neurons and between the different nerve processes. The presynaptic terminals can be divided into three types based on a combination of synaptic vesicles. Type I terminals, presumably cholinergic synaptic terminals, contain only small clear vesicles of 40-50 nm in diameter. Type II terminals, presumably adrenergic terminals, are characterized by small granulated vesicles of 40-60 nm in diameter. Type III terminals, probably of local origin, contain a variable number of large granulated vesicles of 80-140 nm in diameter. Occasionally, a single nerve fibre contacted several (two or four) other nerve processes forming a typical synapse. In other cases, on one nerve cell soma or on other nerve processes there are two or three different-type nerve terminals establishing synapses. It might be inferred from these observations that convergence and divergence can occur in the local ganglia and that cholinergic and adrenergic synaptic terminals can modulate the ganglionic activity. However, a local circuit also can play an important role in coordinating the function of the bladder.  相似文献   

3.
Crustacean and insect neuromuscular junctions typically include numerous small synapses, each of which usually contains one or more active zones, which possess voltage-sensitive calcium channels and are specialized for release of synaptic vesicles. Strength of transmission (the number of quantal units released per synapse by a nerve impulse) varies greatly among different endings of individual neurons, and from one neuron to another. Ultrastructural features of synapses account for some of the physiological differences at endings of individual neurons. The nerve terminals that release more neurotransmitter per impulse have a higher incidence of synapses with more than one active zone, and this is correlated with more calcium build-up during stimulation. However, comparison of synaptic structure in neurons with different physiological phenotypes indicates no major differences in structure that could account for their different levels of neurotransmitter release per impulse, and release per synapse differs among neurons despite similar calcium build-up in their terminals during stimulation. The evidence indicates differences in calcium sensitivity of the release process among neurons as an aspect of physiological specialization.  相似文献   

4.
Serotonin is a major modulator of behavior in vertebrates and invertebrates and deficiencies in the serotonergic system account for several behavioral disorders in humans.The small numbers of serotonergic central neurons of vertebrates and invertebrates produce their effects by use of two modes of secretion: from synaptic terminals, acting locally in hard wired circuits, and from extrasynaptic axonal and somatodendritic release sites in the absence of postsynaptic targets, producing paracrine effects.In this paper, we review the evidence of synaptic and extrasynaptic release of serotonin and the mechanisms underlying each secretion mode by combining evidence from vertebrates and invertebrates. Particular emphasis is given to somatic secretion of serotonin by central neurons.Most of the mechanisms of serotonin release have been elucidated in cultured synapses made by Retzius neurons from the central nervous system of the leech. Serotonin release from synaptic terminals occurs from clear and dense core vesicles at active zones upon depolarization. In general, synaptic serotonin release is similar to release of acetylcholine in the neuromuscular junction.The soma of Retzius neurons releases serotonin from clusters of dense core vesicles in the absence of active zones. This type of secretion is dependent of the stimulation frequency, on L-type calcium channel activation and on calcium-induced calcium release.The characteristics of somatic secretion of serotonin in Retzius neurons are similar to those of somatic secretion of dopamine and peptides by other neuron types. In general, somatic secretion by neurons is different from transmitter release from clear vesicles at synapses and similar to secretion by excitable endocrine cells.  相似文献   

5.
The actin cytoskeleton and neurotransmitter release: an overview   总被引:12,自引:0,他引:12  
Doussau F  Augustine GJ 《Biochimie》2000,82(4):353-363
Here we review evidence that actin and its binding partners are involved in the release of neurotransmitters at synapses. The spatial and temporal characteristics of neurotransmitter release are determined by the distribution of synaptic vesicles at the active zones, presynaptic sites of secretion. Synaptic vesicles accumulate near active zones in a readily releasable pool that is docked at the plasma membrane and ready to fuse in response to calcium entry and a secondary, reserve pool that is in the interior of the presynaptic terminal. A network of actin filaments associated with synaptic vesicles might play an important role in maintaining synaptic vesicles within the reserve pool. Actin and myosin also have been implicated in the translocation of vesicles from the reserve pool to the presynaptic plasma membrane. Refilling of the readily releasable vesicle pool during intense stimulation of neurotransmitter release also implicates synapsins as reversible links between synaptic vesicles and actin filaments. The diversity of actin binding partners in nerve terminals suggests that actin might have presynaptic functions beyond synaptic vesicle tethering or movement. Because most of these actin-binding proteins are regulated by calcium, actin might be a pivotal participant in calcium signaling inside presynaptic nerve terminals. However, there is no evidence that actin participates in fusion of synaptic vesicles.  相似文献   

6.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

7.
The distribution of synapses and synaptic bouton types in the mesencephalic trigeminal (Me5) nucleus was examined in a quantitative electron-microscopical study. Of 588 terminal boutons that were counted in the compact caudal part of the Me5 nucleus, less than 8% formed synapses on the somata of the predominantly unipolar Me5 neurons. About 79% formed synapses on fibres located between the Me5 somata, while about 13% of the vesicle-containing terminals had no clear synaptic specialization. All of these non-synaptic terminals were G type boutons, with pleomorphic and large characteristic dense-core vesicles. Approximately 60% of the axosomatic synapses were of the S type, containing spherical vesicles and an asymmetrical or symmetrical synaptic specialization. About 20, respectively 15% of the axosomatic synapses, were of the F, respectively P type; both are symmetrical synapse types containing either a majority of flat or pleomorphic vesicles. Less than 10% of the axosomatic synapses were of the G type. Although some proportional differences were noted, an almost similar bouton type distribution pattern was found for the axodendritic synapses suggesting that the axosomatic and axodendritic synapses in the Me5 nucleus are part of the same afferent fibre plexus covering the Me5 nucleus.  相似文献   

8.
Electron-microscopic studies were made on the appearance of synapses in the intramural ganglion (Auerbach) and findings were correlated with the onset and development of intestinal peristalsis in 6- to 30-week-old human and rabbit fetuses from the 12th day after conception until birth. At stage I, in which the small intestine shows no indication of a muscle layer or spontaneous peristalsis, primitive synapses containing several clear vesicles and a few cored vesicles are seen on neuroblasts and their processes (dendrites). At stage II, in which the circular muscle is developed and bidirectional peristalsis occurs, synaptic profiles can be classified into 3 types. Type 1 is the most numerous but seldom shows membrane specificity on the synaptic portion. Types 2 and 3 have small flattened vesicles and small round vesicles, respectively. They are further characterized by thickening of snyaptic membranes and aggregation of small clear vesicles associated with the presynaptic membrane. At stage III, the longitudinal muscle layer develops in the small intestine. At this stage, nerve terminals containing mainly cored vesicles have been observed and classified into types 4 and 5, according to their morphology. At stage IV, antiperistalsis no longer occurs and type 6 nerve terminals in the intramural ganglia can be recognized by their densely packed, large-cored vesicles. The possible physiological significance of the nerve terminals has been discussed.  相似文献   

9.

Background

Our previous study demonstrated that nitric oxide (NO) contributes to long-term potentiation (LTP) of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR) is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway.

Results

By means of field potential recordings in the adult male rat in vivo, we showed that RyR antagonist reduced LTP of C-fiber-evoked responses in the spinal dorsal horn by tetanic stimulation of the sciatic nerve. Using spinal cord slice preparations and field potential recordings from superficial dorsal horn, high frequency stimulation of Lissauer's tract (LT) stably induced LTP of field excitatory postsynaptic potentials (fEPSPs). Perfusion of RyR antagonists blocked the induction of LT stimulation-evoked spinal LTP, while Ins(1,4,5)P3 receptor (IP3R) antagonist had no significant effect on LTP induction. Moreover, activation of RyRs by caffeine without high frequency stimulation induced a long-term potentiation in the presence of bicuculline methiodide and strychnine. Further, in patch-clamp recordings from superficial dorsal horn neurons, activation of RyRs resulted in a large increase in the frequency of miniature EPSCs (mEPSCs). Immunohistochemical study showed that RyRs were expressed in the dorsal root ganglion (DRG) neurons. Likewise, calcium imaging in small DRG neurons illustrated that activation of RyRs elevated [Ca2+]i in small DRG neurons.

Conclusions

These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.  相似文献   

10.
The cardiac ganglion in the lobster Homarus americanus was examined with a transmission electron microscope. Nerve terminals often existed in large aggregations surrounded by glial and connective tissue elements. Axo-axonic and axo-dendritic synapses were present. Six ultrastructurally different types of nerve terminal, each containing an abundance of vesicles, were distinguished: three formed discrete chemical synapses as indicated by typical release site morphology; three did not. The latter appear to be neurosecretory axon terminals of extrinsic neurons. More than one morphologically distinct type of synaptic vesicle occurred commonly in a given terminal, suggesting the presence of coexisting neurotransmitters and/or neuroregulatory factors. Symmetrical chemical synapses and electrotonic junctions between axons were present.  相似文献   

11.
The ultrastructure of layer I in the middle ectosylvian gyrus (area 22) of the cat's cerebral cortex was investigated. Beneath the subpial astrocytic layer most of the neuropil in layer I was shown to be occupied by nerve fibers and their terminals, terminal branches, dendritic spines, and astrocytic processes surrounding them. More than 90% of the presynaptic terminals contained spherical synaptic vesicles. The predominant types of interneuronal junctions are axo-spinous and axo-dendritic synapses of asymmetrical type. Presynaptic terminals, which contain flattened and pleomorphic synaptic vesicles, take part in the formation of all symmetrical junctions, accounting for 6% of the total number of synapses. Large polymorphic outgrowths filled with vacuoles — so-called multivacuolar sacs — are described. These structures were invaginated into varicose expansion of the terminal branches of apical dendrites of pyramidal neurons. They are shown to be outgrowths of presynaptic terminals. Dependence of synaptic function on the shape of the synaptic vesicles is examined.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 15, No. 1, pp. 50–55, January–February, 1983.  相似文献   

12.
K Kozasa  Y Nakai 《Acta anatomica》1987,128(3):243-249
The synaptic relationship between catecholamine terminals and adrenocorticotropic hormone (ACTH)-containing neurons in the arcuate nucleus (AN) of the rat hypothalamus was investigated by electron microscopy, using ACTH immunocytochemistry combined with autoradiography after 3H-dopamine (3H-DA) injection or 5-hydroxydopamine (5-OHDA) uptake in the same tissue section. ACTH-like (ACTH-LI) immunoreactive nerve cell bodies and fibers received synaptic inputs by axon terminals labeled with 3H-DA or 5-OHDA in the AN. This suggests that catecholaminergic neurons, at least DA- and 5-OHDA-containing neurons, may play an important role in the regulation of ACTH secretion or other functions of ACTH neurons via synapses in the AN of the rat hypothalamus.  相似文献   

13.
Guan JL  Wang QP  Hori T  Takenoya F  Kageyama H  Shioda S 《Peptides》2004,25(8):1307-1311
The ultrastructural properties of orexin 1-receptor-like immunoreactive (OX1R-LI) neurons in the dorsal horn of the rat spinal cord were examined using light and electron microscopy techniques. At the light microscopy level, the most heavily immunostained OX1R-LI neurons were found in the ventral horn of the spinal cord, while some immunostained profiles, including nerve fibers and small neurons, were also found in the dorsal horn. At the electron microscopy level, OX1R-LI perikarya were identified containing numerous dense-cored vesicles which were more heavily immunostained than any other organelles. Similar vesicles were also found within the axon terminals of the OX1R-LI neurons. The perikarya and dendrites of some of the OX1R-LI neurons could be seen receiving synapses from immunonegative axon terminals. These synapses were found mostly asymmetric in shape. Occasionally, some OX1R-LI axon terminals were found making synapses on dendrites that were OX1R-LI in some cases and immunonegative in others. The synapses made by OX1R-LI axon terminals were found both asymmetric and symmetric in appearance. The results provide solid morphological evidence that OX1R is transported in the dense-cored vesicles from the perikarya to axon terminals and that OX1R-LI neurons in the dorsal horn of the spinal cord have complex synaptic relationships both with other OX1R-LI neurons as well as other neuron types.  相似文献   

14.
The modern condition of knowledge about the molecular mechanisms underlying the quantal transmitter release in the central and the peripheric synapses is analysed. The data about the synaptic vesicles types, their forming, transporting to the sites of release at the nerve endings, exo- and endocytosis processes are presented. Ultrastructural and molecular organization of active zone of nerve ending and transmitter release morphofunctional unit--secretosome, which includes synaptic vesicle, exocytosis protein complex and calcium channels, are described. The basic proteins involved in the exo- and endocytosis and their interactions during transmitter release are examined. The role of the intracellular buffer systems, calcium micro- and macrodomains in the quantal transmitter secretion are considered. The reasons of the active zones functional non-uniformity and plasticity and factors reduced transmitter release in the active zone to the single quantum are analysed.  相似文献   

15.
The neuronal isoform of vesicular monoamine transporter, VMAT2, is responsible for packaging dopamine and other monoamines into synaptic vesicles and thereby plays an essential role in dopamine neurotransmission. Dopamine neurons in mice lacking VMAT2 are unable to store or release dopamine from their synaptic vesicles. To determine how VMAT2-mediated filling influences synaptic vesicle morphology and function, we examined dopamine terminals from VMAT2 knockout mice. In contrast to the abnormalities reported in glutamatergic terminals of mice lacking VGLUT1, the corresponding vesicular transporter for glutamate, we found that the ultrastructure of dopamine terminals and synaptic vesicles in VMAT2 knockout mice were indistinguishable from wild type. Using the activity-dependent dyes FM1-43 and FM2-10, we also found that synaptic vesicles in dopamine neurons lacking VMAT2 undergo endocytosis and exocytosis with kinetics identical to those seen in wild-type neurons. Together, these results demonstrate that dopamine synaptic vesicle biogenesis and cycling are independent of vesicle filling with transmitter. By demonstrating that such empty synaptic vesicles can cycle at the nerve terminal, our study suggests that physiological changes in VMAT2 levels or trafficking at the synapse may regulate dopamine release by altering the ratio of fillable-to-empty synaptic vesicles, as both continue to cycle in response to neural activity.  相似文献   

16.
Glutamate and GABA mediate most of the excitatory and inhibitory synaptic transmission; they are taken up and accumulated in synaptic vesicles by specific vesicular transporters named VGLUT1-3 and VGAT, respectively. Recent studies show that VGLUT2 and VGLUT3 are co-expressed with VGAT. Because of the relevance this information has for our understanding of synaptic physiology and plasticity, we investigated whether VGLUT1 and VGAT are co-expressed in rat cortical neurons. In cortical cultures and layer V cortical terminals we observed a population of terminals expressing VGLUT1 and VGAT. Post-embedding immunogold studies showed that VGLUT1+/VGAT+ terminals formed both symmetric and asymmetric synapses. Triple-labeling studies revealed GABAergic synapses expressing VGLUT1 and glutamatergic synapses expressing VGAT. Immunoisolation studies showed that anti-VGAT immunoisolated vesicles contained VGLUT1 and anti-VGLUT1 immunoisolated vesicles contained VGAT. Finally, vesicles containing VGAT resident in glutamatergic terminals undergo active recycling. In conclusion, we demonstrate that in neocortex VGLUT1 and VGAT are co-expressed in a subset of axon terminals forming both symmetric and asymmetric synapses, that VGLUT1 and VGAT are sorted to the same vesicles and that vesicles at synapses expressing the vesicular heterotransporter participate in the exo-endocytotic cycle.  相似文献   

17.
The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy.  相似文献   

18.
Summary This investigation was undertaken to describe the ultrastructure of cardiac ganglia in rabbits from day 18 of gestation to day 35 postpartum. Special attention was directed to the types of synaptic contacts made with the principal neurons and with the small granule-containing cells. The cardiac ganglia in all animals consisted mainly of parasympathetic postganglionic neurons, supporting cells, and small granule-containing (small intensely fluorescent) cells. The neurons received afferent synaptic terminals of two types. One type contained mainly small clear vesicles typical of most cholinergic terminals. The second type contained mainly small dense-core vesicles (these were most prominent after treatment of the animal with 5-hydroxydopamine), and were considered to be adrenergic terminals. These adrenergic terminals are probably part of an inhibitory system in the ganglia. The small granule-containing cells received typical afferent synaptic terminals of the cholinergic type, and also formed specialized contacts with certain axonal terminals. These latter specializations are considered to be reciprocal synapses which probably have a role in modulating ganglionic transmission.Supported by the Kentucky Heart Association and the Heart Association of Louisville and Jefferson County  相似文献   

19.
The axon terminals of the acoustic nerve contact different part of the cochlear nucleus including granule cell areas. Little is known of the cell composition and neural circuits of granule cell areas present in the fusiform and upper polymorphic layers of the dorsal cochlear nucleus in the guinea pig. The present ultrastructural immunocytochemical study exploits the technique of post-embedding immunogold and silver intensification to reveal the characteristics of small neurons in granule cell areas. Few neurons (Golgi-stellate cells) use glycine as inhibitory neurotransmitter which is present in symmetric synaptic boutons with pleomorphic and flat vesicles. In contrast, most neurons (granule and unipolar brush cells) are not glycine-positive, and presumably not excitatory. Most of the large axons (mossy fibres) in granule areas are probably excitatory (glycine-negative and storing round synaptic vesicles) and contact unipolar brush cells forming large synapses or granule cell dendrites by small synapses. A few large glycinergic boutons (inhibitory) also contact unipolar brush cells. The excitatory circuit of mossy fibre-unipolar brush and granule cells may be inhibited by the glycinergic terminals from the few glycinergic cells (Golgi-stellate neurons) present within the granule cell areas. The latter are not contacted by large mossy-like glycine terminals.  相似文献   

20.
Summary Various types of synaptic formations on pinealocytes and pineal neurons were found in the pineal body of Macaca fuscata. Axo-somatic synapses of the Gray type-II category were detected on the pinealocyte cell body. Gap junctions and ribbon synapses were observed between adjacent pinealocytes. About 70 nerve-cell bodies were detected in one half of the whole pineal body bisected midsagittally. They were localized exclusively deep in the central part. When examined electron-microscopically, they were found to receive ribbon-synapse-like contacts from pinealocytic processes. They also received synaptic contacts of the Gray type-I category on their dendrites, and those of the Gray type-II category on their cell bodies from nerve terminals of unknown origin. All these synapse-forming axon terminals contained small clear vesicles. Thus, the pineal neurons of the monkey, at least in part, are suggested to be derived from the pineal ganglion cells in the lower vertebrates and not from the postganglionic parasympathetic neurons. The functional significance of these observations is discussed in relation to the innervation of the pineal body of the monkey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号