首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function in splicing of a heterodimeric nuclear cap binding complex (yCBC) from the yeast Saccharomyces cerevisiae has been examined. Immunodepletion of splicing extracts with antibodies directed against one component of the complex, yCBP80, results in the efficient co-depletion of the second component, yCBP20, producing CBC-deficient splicing extract. This extract exhibits strongly reduced splicing efficiency and similar reductions in the assembly of both spliceosomes and of the earliest defined precursors to spliceosomes, commitment complexes. The addition of highly purified yCBC substantially restores these defects. These results, together with other data, suggest that CBCs play a highly conserved role in the recognition of pre-mRNA substrates at an early step in the splicing process.  相似文献   

2.
Removal of introns from pre-mRNA is an essential step of gene expression. The splicing reaction is catalyzed in a large complex termed the spliceosome. Introns are recognized during the early steps of spliceosome assembly with the formation of commitment complexes. Intron recognition is mediated by the interaction of splicing factors with conserved sequences present in the pre-mRNA. BBP/SF1 participates in this recognition by interacting with the pre-mRNA branch point in both yeast and mammals. This protein, which is essential in yeast, also interacts with the U2AF65/Mud2 splicing factor. However, its precise role in splicing complex formation is still unclear. We have now analyzed the presence of BBP and Mud2 in yeast splicing complexes using supershift and coprecipitation assays. We found that BBP is present together with Mud2 in commitment complex 2 (CC2), but is not detectable in commitment complex 1 (CC1). Furthermore, genetic and biochemical depletion of BBP demonstrated that it is required for CC2 formation. In addition we observed that BBP and Mud2 are not detectable in pre-spliceosomes. These are the first commitment complex components that are shown to be released during or immediately after pre-spliceosome formation. Interestingly, depletion of BBP or disruption of MUD2 had no significant effect on pre-spliceosome formation and splicing in vitro but led to a transient accumulation of CC1. These observations support a model in which BBP and Mud2 are recycled during transition from CC2 to pre-spliceosome.  相似文献   

3.
Eukaryotes have two types of ribosomes containing either 5.8SL or 5.8SS rRNA that are produced by alternative pre-rRNA processing. The exact processing pathway for the minor 5.8SL rRNA species is poorly documented. We have previously shown that the trans-acting factor Rrp5p and the RNA exonuclease Rex4p genetically interact to influence the ratio between the two forms of 5.8S rRNA in the yeast Saccharomyces cerevisiae. Here we report a further analysis of ITS1 processing in various yeast mutants that reveals genetic interactions between, on the one hand, Rrp5p and RNase MRP, the endonuclease required for 5.8SS rRNA synthesis, and, on the other, Rex4p, the RNase III homolog Rnt1p, and the debranching enzyme Dbr1p. Yeast cells carrying a temperature-sensitive mutation in RNase MRP (rrp2-1) exhibit a pre-rRNA processing phenotype very similar to that of the previously studied rrp5-33 mutant: ITS2 processing precedes ITS1 processing, 5.8SL rRNA becomes the major species, and ITS1 is processed at the recently reported novel site A4 located midway between sites A2 and A3. As in the rrp5-Delta3 mutant, all of these phenotypical processing features disappear upon inactivation of the REX4 gene. Moreover, inactivation of the DBR1 gene in rrp2-1, or the RNT1 gene in rrp5-Delta3 mutant cells also negates the effects of the original mutation on pre-rRNA processing. These data link a total of three RNA catabolic enzymes, Rex4p, Rnt1p, and Dbr1p, to ITS1 processing and the relative production of 5.8SS and 5.8SL rRNA. A possible model for the indirect involvement of the three enzymes in yeast pre-rRNA processing is discussed.  相似文献   

4.
The U2 snRNP promotes prespliceosome assembly through interactions that minimally involve the branchpoint binding protein, Mud2p, and the pre-mRNA. We previously showed that seven proteins copurify with the yeast (Saccharomyces cerevisiae) SF3b U2 subcomplex that associates with the pre-mRNA branchpoint region: Rse1p, Hsh155p, Hsh49p, Cus1p, and Rds3p and unidentified subunits p10 and p17. Here proteomic and genetic studies identify Rcp10p as p10 and show that it contributes to SF3b stability and is necessary for normal cellular Cus1p accumulation and for U2 snRNP recruitment in splicing. Remarkably, only the final 53 amino acids of Rcp10p are essential. p17 is shown to be composed of two accessory splicing factors, Bud31p and Ist3p, the latter of which independently associates with the RES complex implicated in the nuclear pre-mRNA retention. A directed two-hybrid screen reveals a network of prospective interactions that includes previously unreported intra-SF3b contacts and SF3b interactions with the RES subunit Bud13p, the Prp5p DExD/H-box protein, Mud2p, and the late-acting nineteen complex. These data establish the concordance of yeast and mammalian SF3b complexes, implicate accessory splicing factors in U2 snRNP function, and support SF3b contribution from early pre-mRNP recognition to late steps in splicing.  相似文献   

5.
6.
Sponges (Porifera) represent the most basal branch of the Metazoa alive today. We show that two central stress-activated protein kinases involved in the osmosensing pathway, p38 mitogen-activated protein kinase (MAPK) and JNK, can complement for the ancestral MAPK Hog1 in the yeast Saccharomyces cerevisiae. S. cerevisiae mutants lacking Hog1 (hog1-Delta 1) have been complemented with the sponge SDJNK and SDp38 genes. Western blotting has revealed that, after transformation, the hog1-Delta 1+ SDJNK(sense) and hog1-Delta 1+ SDp38(sense) clones express the sponge proteins. Functional studies have demonstrated that the complemented clones grow under hyperosmotic conditions (0.6 M NaCl). Furthermore, the expressed sponge kinases undergo phosphorylation in S. cerevisiae at 0.6 M NaCl. This report documents that the metazoan signal transduction kinases, p38 and JNK, which were originally derived from an common ancestor with yeast HOG1, have retained their function after their specification.  相似文献   

7.
Rrp5p is the only protein so far known to be required for the processing of yeast pre-rRNA at both the early sites A0, A1 and A2 leading to 18S rRNA and at site A3, the first step specific for the pathway leading to 5.8S/25S rRNA. Previous in vivo mutational analysis of Rrp5p demonstrated that the first 8 of its 12 S1 RNA-binding motifs are involved in the formation of the 'short' form of 5.8S rRNA (5.8S(S)), which is the predominant species under normal conditions. We have constructed two strains in which the genomic RRP5 gene has been replaced by an rrp5 deletion mutant lacking either S1 motifs 3-5 (rrp5-Delta3) or 5-8 (rrp5-Delta4). The first mutant synthesizes almost exclusively 5.8S(L) rRNA, whereas the second one still produces a considerable amount of the 5.8S(S) species. Nevertheless, both mutations were found to block cleavage at site A3 completely. Instead, a novel processing event occurs at a site in a conserved stem-loop structure located between sites A2 and A3, which we have named A4. A synthetic lethality screen using the rrp5-Delta3 and rrp-Delta4 mutations identified the REX4 gene, which encodes a non-essential protein belonging to a class of related yeast proteins that includes several known 3'-->5' exonucleases. Inactivation of the REX4 gene in rrp5-Delta3 or rrp-Delta4 cells abolished cleavage at A4, restored cleavage at A3 and returned the 5.8S(S):5.8S(L) ratio to the wild-type value. The sl phenotype of the rrp5Delta/rex4(-) double mutants appears to be due to a severe disturbance in ribosomal subunit assembly, rather than pre-rRNA processing. The data provide direct evidence for a crucial role of the multiple S1 motifs of Rrp5p in ensuring the correct assembly and action of the processing complex responsible for cleavage at site A3. Furthermore, they clearly implicate Rex4p in both pre-rRNA processing and ribosome assembly, even though this protein is not essential for yeast.  相似文献   

8.
9.
10.
U2 small nuclear RNA (snRNA) contains a sequence (GUAGUA) that pairs with the intron branchpoint during splicing. This sequence is contained within a longer invariant sequence of unknown secondary structure and function that extends between U2 and I and stem IIa. A part of this region has been proposed to pair with U6 in a structure called helix III. We made mutations to test the function of these nucleotides in yeast U2 snRNA. Most single base changes cause no obvious growth defects; however, several single and double mutations are lethal or conditional lethal and cause a block before the first step of splicing. We used U6 compensatory mutations to assess the contribution of helix III and found that if it forms, helix III is dispensable for splicing in Saccharomyces cerevisiae. On the other hand, mutations in known protein components of the splicing apparatus suppress or enhance the phenotypes of mutations within the invariant sequence that connect the branchpoint recognition sequence to stem IIa. Lethal mutations in the region are suppressed by Cus1-54p, a mutant yeast splicing factor homologous to a mammalian SF3b subunit. Synthetic lethal interactions show that this region collaborates with the DEAD-box protein Prp5p and the yeast SF3a subunits Prp9p, Prp11p, and Prp21p. Together, the data show that the highly conserved RNA element downstream of the branchpoint recognition sequence of U2 snRNA in yeast cells functions primarily with the proteins that make up SF3 rather than with U6 snRNA.  相似文献   

11.
Related exosome complexes of 3'-->5' exonucleases are present in the nucleus and the cytoplasm. Purification of exosome complexes from whole-cell lysates identified a Mg(2+)-labile factor present in substoichiometric amounts. This protein was identified as the nuclear protein Yhr081p, the homologue of human C1D, which we have designated Rrp47p (for rRNA processing). Immunoprecipitation of epitope-tagged Rrp47p confirmed its interaction with the exosome and revealed its association with Rrp6p, a 3'-->5' exonuclease specific to the nuclear exosome fraction. Northern analyses demonstrated that Rrp47p is required for the exosome-dependent processing of rRNA and small nucleolar RNA (snoRNA) precursors. Rrp47p also participates in the 3' processing of U4 and U5 small nuclear RNAs (snRNAs). The defects in the processing of stable RNAs seen in rrp47-Delta strains closely resemble those of strains lacking Rrp6p. In contrast, Rrp47p is not required for the Rrp6p-dependent degradation of 3'-extended nuclear pre-mRNAs or the cytoplasmic 3'-->5' mRNA decay pathway. We propose that Rrp47p functions as a substrate-specific nuclear cofactor for exosome activity in the processing of stable RNAs.  相似文献   

12.
PUF60: a novel U2AF65-related splicing activity   总被引:5,自引:0,他引:5       下载免费PDF全文
We have identified a new pyrimidine-tract binding factor, PUF, that is required, together with U2AF, for efficient reconstitution of RNA splicing in vitro. The activity has been purified and consists of two proteins, PUF60 and the previously described splicing factor p54. p54 and PUF60 form a stable complex in vitro when cotranslated in a reaction mixture. PUF activity, in conjunction with U2AF, facilitates the association of U2 snRNP with the pre-mRNA. This reaction is dependent upon the presence of the large subunit of U2AF, U2AF65, but not the small subunit U2AF35. PUF60 is homologous to both U2AF65 and the yeast splicing factor Mud2p. The C-terminal domain of PUF60, the PUMP domain, is distantly related to the RNA-recognition motif domain, and is probably important in protein-protein interactions.  相似文献   

13.
The yeast Saccharomyces cerevisiae Prp19p protein is an essential splicing factor and a spliceosomal component. It is not tightly associated with small nuclear RNAs (snRNAs) but is associated with a protein complex consisting of at least eight proteins. We have identified two novel components of the Prp19p-associated complex, Ntc30p and Ntc20p. Like other identified components of the complex, both Ntc30p and Ntc20p are associated with the spliceosome in the same manner as Prp19p immediately after or concurrently with dissociation of U4, indicating that the entire complex may bind to the spliceosome as an intact form. Neither Ntc30p nor Ntc20p directly interacts with Prp19p, but both interact with another component of the complex, Ntc85p. Immunoprecipitation analysis revealed an ordered interactions of these components in formation of the Prp19p-associated complex. Although null mutants of NTC30 or NTC20 showed no obvious growth phenotype, deletion of both genes impaired yeast growth resulting in accumulation of precursor mRNA. Extracts prepared from such a strain were defective in pre-mRNA splicing in vitro, but the splicing activity could be restored upon addition of the purified Prp19p-associated complex. These results indicate that Ntc30p and Ntc20p are auxiliary splicing factors the functions of which may be modulating the function of the Prp19p-associated complex.  相似文献   

14.
15.
The 3' end of mammalian introns is marked by the branchpoint binding protein, SF1, and the U2AF65-U2AF35 heterodimer bound at an adjacent sequence. Baker's yeast has equivalent proteins, branchpoint binding protein (BBP) (SF1) and Mud2p (U2AF65), but lacks an obvious U2AF35 homolog, leaving open the question of whether another protein substitutes during spliceosome assembly. Gel filtration, affinity selection and mass spectrometry were used to show that rather than a U2AF65/U2AF35-like heterodimer, Mud2p forms a complex with BBP without a third (U2AF35-like) factor. Using mutants of MUD2 and BBP, we show that the BBP-Mud2p complex bridges partner-specific Prp39p, Mer1p, Clf1p and Smy2p two-hybrid interactions. In addition to inhibiting Mud2p association, the bbpDelta56 mutation impairs splicing, enhances pre-mRNA release from the nucleus, and similar to a mud2::KAN knockout, suppresses a lethal sub2::KAN mutation. Unexpectedly, rather than exacerbating bbpDelta56, the mud2::KAN mutation partially suppresses a pre-mRNA accumulation defect observed with bbpDelta56. We propose that a BBP-Mud2p heterodimer binds as a unit to the branchpoint in vivo and serves as a target for the Sub2p-DExD/H-box ATPase and for other splicing factors during spliceosome assembly. In addition, our results suggest the possibility that the Mud2p may enhance the turnover of pre-mRNA with impaired BBP-branchpoint association.  相似文献   

16.
The juvenile form of neuronal ceroid lipofuscinoses (JNCLs), or Batten disease, results from mutations in the CLN3 gene, and it is characterized by the accumulation of lipopigments in the lysosomes of several cell types and by extensive neuronal death. We report that the yeast model for JNCL (btn1-Delta) that lacks BTN1, the homologue to human CLN3, has increased resistance to menadione-generated oxidative stress. Expression of human CLN3 complemented the btn1-Delta phenotype, and equivalent Btn1p/Cln3 mutations correlated with JNCL severity. We show that the previously reported decreased levels of L-arginine in btn1-Delta limit the synthesis of nitric oxide (.NO) in both physiological and oxidative stress conditions. This defect in .NO synthesis seems to suppress the signaling required for yeast menadione-induced apoptosis, thus explaining btn1-Delta phenotype of increased resistance. We propose that in JNCL, a limited capacity to synthesize .NO directly caused by the absence of Cln3 function may contribute to the pathology of the disease.  相似文献   

17.
The yeast putative RNA helicase Mtr4p is implicated in exosome-mediated RNA quality control in the nucleus, interacts with the exosome, and is found in the ‘TRAMP’ complex with a yeast nuclear poly(A) polymerase (Trf4p/Pap2p or Trf5p) and a putative RNA-binding protein, Air1p or Air2p. Depletion of the Trypanosoma brucei MTR4-like protein TbMTR4 caused growth arrest and defects in 5.8S rRNA processing similar to those seen after depletion of the exosome. TbNPAPL, a nuclear protein which is a putative homolog of Trf4p/Pap2p, was required for normal cell growth. Depletion of MTR4 resulted in the accumulation of polyadenylated rRNA precursors, while depletion of TbNPAPL had little effect. These results suggest that polyadenylation-dependent nuclear rRNA quality control is conserved in eukaryotic evolution. In contrast, there was no evidence for a trypanosome TRAMP complex since no stable interactions between TbMTR4 and the exosome, TbNPAPL or RNA-binding proteins were detected.  相似文献   

18.
Functions of the exosome in rRNA, snoRNA and snRNA synthesis.   总被引:28,自引:0,他引:28       下载免费PDF全文
The yeast nuclear exosome contains multiple 3'-->5' exoribonucleases, raising the question of why so many activities are present in the complex. All components are required during the 3' processing of the 5.8S rRNA, together with the putative RNA helicase Dob1p/Mtr4p. During this processing three distinct steps can be resolved, and hand-over between different exonucleases appears to occur at least twice. 3' processing of snoRNAs (small nucleolar RNAs) that are excised from polycistronic precursors or from mRNA introns is also a multi-step process that involves the exosome, with final trimming specifically dependent on the Rrp6p component. The spliceosomal U4 snRNA (small nuclear RNA) is synthesized from a 3' extended precursor that is cleaved by Rnt1p at sites 135 and 169 nt downstream of the mature 3' end. This cleavage is followed by 3'-->5' processing of the pre-snRNA involving the exosome complex and Dob1p. The exosome, together with Rnt1p, also participates in the 3' processing of the U1 and U5 snRNAs. We conclude that the exosome is involved in the processing of many RNA substrates and that different components can have distinct functions.  相似文献   

19.
Saccharomyces cerevisiae Msl5 (branchpoint binding protein) orchestrates spliceosome assembly by binding the branchpoint sequence 5'-UACUAAC and establishing cross intron-bridging interactions with other components of the splicing machinery. Reciprocal tandem affinity purifications verify that Msl5 exists in vivo as a heterodimer with Mud2 and that the Msl5-Mud2 complex is associated with the U1 snRNP. By gauging the ability of mutants of Msl5 to complement msl5Δ, we find that the Mud2-binding (amino acids 35-54) and putative Prp40-binding (PPxY(100)) elements of the Msl5 N-terminal domain are inessential, as are the C-terminal proline-rich domain (amino acids 382-476) and two zinc-binding CxxCxxxxHxxxxC motifs (amino acids 273-286 and 299-312). A subset of conserved branchpoint RNA-binding amino acids in the central KH-QUA2 domain (amino acids 146-269) are essential pairwise (Ile198-Arg190; Leu256-Leu259) or in trios (Leu169-Arg172-Leu176), whereas other pairs of RNA-binding residues are dispensable. We used our collection of viable Msl5 mutants to interrogate synthetic genetic interactions, in cis between the inessential structural elements of the Msl5 polypeptide and in trans between Msl5 and yeast splicing factors (Mud2, Nam8 and Tgs1) that are optional for vegetative growth. The results suggest a network of important but functionally buffered protein-protein and protein-RNA interactions between the Mud2-Msl5 complex at the branchpoint and the U1 snRNP at the 5' splice site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号