首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A system for genetic transformation of Coffea canephora by co-cultivation with Agrobacterium rhizogenes harbouring a binary vector has been developed. The objective of the present study was the genetic transformation and direct regeneration of transformants through secondary embryos bypassing an intervening hairy root stage. Transformants were obtained with a transformation efficiency up to 3% depending on the medium adjuvant used. A. rhizogenes strain A4 harbouring plasmid pCAMBIA 1301 with an intron uidA reporter and hygromycin phosphotransferase (hptII) marker gene was used for sonication-assisted transformation of Coffea canephora. The use of hygromycin in the secondary embryo induction medium allowed the selection of transgenic secondary embryos having Ri T-DNA along with the T-DNA from the pCAMBIA 1301 binary vector. In addition transgenic secondary embryos devoid of Ri-T-DNA but with stable integration of the T-DNA from the binary vector were obtained. The putative transformants were positive for the expression of the uidA gene. PCR and Southern blot analysis confirmed the independent, transgenic nature of the analysed plants and indicated single and multiple locus integrations. The study clearly demonstrates that A. rhizogenes can be used for delivering transgenes into tree species like Coffea using binary vectors with Agrobacterium tumefaciens T-DNA borders.  相似文献   

2.
Nineteen transgenic banana plants, produced via Agrobacterium-mediated transformation, were analyzed for the integration of T-DNA border regions using an improved anchored PCR technique. The method described is a relatively fast, three-step procedure (restriction digestion of genomic DNA, ligation of ‘vectorette’-type adaptors, and a single round of suppression PCR) for the amplification of specific T-DNA border-containing genomic fragments. Most transgenic plants carried a low number of inserts and the method was suitable for a detailed characterization of the integration events, including T-DNA border integrity as well as the insertion of non-T-DNA vector sequences, which occurred in 26% of the plants. Furthermore, the particular band pattern generated by four enzyme/primer combinations for each individual plant served as a fingerprint, allowing the identification of plants representing identical transformation events. Genomic Southern hybridization and nucleotide sequence analysis of amplification products confirmed the data obtained by anchored PCR. Sequencing of seven right or left border junction regions revealed different T-DNA processing events for each plant, indicating a relatively low frequency of precisely nicked T-DNA integration among the plants studied.  相似文献   

3.
The Cre/lox system was used to obtain targeted integration of an Agrobacterium T-DNA at a lox site in the genome of Arabidopsis thaliana. Site-specific recombinants, and not random events, were preferentially selected by activation of a silent lox-neomycin phosphotransferase (nptII) target gene. To analyse the effectiveness of Agrobacterium-mediated transfer we used T-DNA vectors harbouring a single lox sequence (this vector had to circularize at the T-DNA left- and right-border sequences prior to site-specific integration) or two lox sequences (this vector allowed circularization at the lox sequences within the T-DNA either prior to or after random integration, followed by targeting of the circularized vector), respectively. Furthermore, to control the reversibility of the integration reaction, Cre recombinase was provided transiently by using a cotransformation approach. One precise stable integrant was found amongst the recombinant calli obtained after transformation with a double-lox T-DNA vector. The results indicate that Agrobacterium-mediated transformation can be used as a tool to obtain site-specific integration.  相似文献   

4.
A highly efficient gene transfer method mediated by Agrobacterium tumefaciens was developed for Group I indica rice, which had been quite recalcitrant in tissue culture and transformation. Freshly isolated immature embryos from plants grown in a greenhouse were inoculated with A. tumefaciens LBA4404 that harbored super-binary vector pTOK233 or pSB134, which had a hygromycin-resistance gene and a GUS gene in the T-DNA. The efficiency of gene transfer varied with the kinds of gelling agents and the basic compositions of co-cultivation media. The highest activity of GUS after co-cultivation was observed when NB medium solidified with agarose was used. For the subsequent cultures, two types of media (modified NB and CC) were chosen to recover hygromycin-resistant cells efficiently. The transformation protocol thus developed worked very well in all of the varieties tested in this study, and the transformation frequency (number of independent hygromycin-resistant and GUS-positive plants per embryo) reached more than 30% in IR8, IR24, IR26, IR36, IR54, IR64, IR72, Xin Qing Ai 1, Nan Jin 11, and Suewon 258. Most of the transformants (T0) were normal in morphology and fertile. Stable integration, expression and inheritance of transgenes were demonstrated by molecular and genetic analysis of transformants in the T0 and T1 generations. For the recovery of multiple independent transgenic events from a single immature embryo, procedures were developed to section the embryo into as many as 30 pieces after non-selective cultures following co-cultivation. Transformants were then obtained from the pieces cultured on the selective media, and, in the highest case, more than seven independent transgenic plants per original embryo (transformation frequency of 738%) were produced. Thus, the efficiency of transformation was remarkably improved.  相似文献   

5.
In order to better utilize insertional mutagenesis and functional genomics in Chinese cabbage, we have developed an improved transformation system that more efficiently produces a large number of transgenic plants. Hypocotyl explants were inoculated withAgrobacterium tumefaciens LBA4404. This strain harbors tagging vector pRCV2, which contains a hygromycin-resistance gene, an ampicillin resistance gene, and a bacterial replication origin within the T-DNA. Transformation efficiency was highest when the explants were first co-cultivated for 3 d in a medium supplemented with 5 mg L-1 acetosyringone, then transferred to a 0.8% agar selection medium containing 10 mg L-1 hygro-mycin. In addition, maintaining a low pH in the co-cultivation medium was critical to enhancing transformation frequency. A total of 3369 transgenic plants were obtained, with efficiencies ranging from 2.89% to 5.00%. Southern blot analysis and T, progeny tests from 120 transgenic plants confirmed that the transgenes were stably inherited to the next generation. We also conducted plasmid rescue and inverse PCR with some transformants, based on their phenotype, to demonstrate the applicability of T-DNA tagging in Chinese cabbage. The tagged sequences were then analyzed.  相似文献   

6.
Agrobacterium tumefaciens is a unique plant pathogenic bacterium renowned for its ability to transform plants. The integration of transferred DNA (T-DNA) and the formation of complex insertions in the genome of transgenic plants during A. tumefaciens-mediated transformation are still poorly understood. Here, we show that complex extrachromosomal T-DNA structures form in A. tumefaciens-infected plants immediately after infection. Furthermore, these extrachromosomal complex DNA molecules can circularize in planta. We recovered circular T-DNA molecules (T-circles) using a novel plasmid-rescue method. Sequencing analysis of the T-circles revealed patterns similar to the insertion patterns commonly found in transgenic plants. The patterns include illegitimate DNA end joining, T-DNA truncations, T-DNA repeats, binary vector sequences, and other unknown "filler" sequences. Our data suggest that prior to T-DNA integration, a transferred single-stranded T-DNA is converted into a double-stranded form. We propose that termini of linear double-stranded T-DNAs are recognized and repaired by the plant's DNA double-strand break-repair machinery. This can lead to circularization, integration, or the formation of extrachromosomal complex T-DNA structures that subsequently may integrate.  相似文献   

7.
Transformation of Portulaca grandiflora has been developed with Agrobacterium tumefaciens strains A281 and T1272. Transformation was assessed by the following criteria: selection of hormone independent callus, antibiotic-resistant callus, and transgenic antibiotic-resistant plants. In addition, DNA hybridization analysis demonstrated that the DNA from tumor lines contained sequences homologous to binary vector T-DNA of strain A281. Following transformation with strain T1272, segregation analysis of the progeny of transgenic plants showed that the transgene was inherited in a Mendelian manner. The kanamycin-resistant progeny tested contained the T-DNA sequence of the strain T1272.  相似文献   

8.
A large number of morphologically normal, fertile, transgenic rice plants were obtained by co-cultivation of rice tissues with Agrobacterium tumefaciens. The efficiency of transformation was similar to that obtained by the methods used routinely for transformation of dicotyledons with the bacterium. Stable integration, expression and inheritance of transgenes were demonstrated by molecular and genetic analysis of transformants in the R0, R1 and R2 generations. Sequence analysis revealed that the boundaries of the T-DNA in transgenic rice plants were essentially identical to those in transgenic dicotyledons. Calli induced from scutella were very good starting materials. A strain of A. tumefaciens that carried a so-called ‘super-binary’ vector gave especially high frequencies of transformation of various cultivars of japonica rice that included Koshihikari, which normally shows poor responses in tissue culture.  相似文献   

9.
转基因水稻T—DNA侧翼序列的扩增与分析   总被引:19,自引:2,他引:17  
利用现有的转抗白叶枯病基因Xa21的水稻材料,通过TAIL-PCR技术扩增出携带Xa21基因的T-DNA的侧翼序列,对24个有效扩增片段的序列分析结果表明,其中14个侧翼序列是水稻DNA,9个含载体主干序列,1个是外源基因Xa21片段,14个T-DNA侧翼的水稻DNA序列与直接转化法外源基因整合位点的基因组序列具有不同的特点,这些T-DNA在水稻染色体上整合后其两端序列的特点类似于在转基因双子叶植物中观察到的现象,在含主干序列的侧翼序列(37.5%,9/24),中,载体主干序列是以不同的类型出现的。  相似文献   

10.
Zhang J  Cai L  Cheng J  Mao H  Fan X  Meng Z  Chan KM  Zhang H  Qi J  Ji L  Hong Y 《Transgenic research》2008,17(2):293-306
While genetically modified upland cotton (Gossypium hirsutum L.) varieties are ranked among the most successful genetically modified organisms (GMO), there is little knowledge on transgene integration in the cotton genome, partly because of the difficulty in obtaining large numbers of transgenic plants. In this study, we analyzed 139 independently derived T0 transgenic cotton plants transformed by Agrobacterium tumefaciens strain AGL1 carrying a binary plasmid pPZP-GFP. It was found by PCR that as many as 31% of the plants had integration of vector backbone sequences. Of the 110 plants with good genomic Southern blot results, 37% had integration of a single T-DNA, 24% had two T-DNA copies and 39% had three or more copies. Multiple copies of the T-DNA existed either as repeats in complex loci or unlinked loci. Our further analysis of two T1 populations showed that segregants with a single T-DNA and no vector sequence could be obtained from T0 plants having multiple T-DNA copies and vector sequence. Out of the 57 T-DNA/T-DNA junctions cloned from complex loci, 27 had canonical T-DNA tandem repeats, the rest (30) had deletions to T-DNAs or had inclusion of vector sequences. Overlapping micro-homology was present for most of the T-DNA/T-DNA junctions (38/57). Right border (RB) ends of the T-DNA were precise while most left border (LB) ends (64%) had truncations to internal border sequences. Sequencing of collinear vector integration outside LB in 33 plants gave evidence that collinear vector sequence was determined in agrobacterium culture. Among the 130 plants with characterized flanking sequences, 12% had the transgene integrated into coding sequences, 12% into repetitive sequences, 7% into rDNAs. Interestingly, 7% had the transgene integrated into chloroplast derived sequences. Nucleotide sequence comparison of target sites in cotton genome before and after T-DNA integration revealed overlapping microhomology between target sites and the T-DNA (8/8), deletions to cotton genome in most cases studied (7/8) and some also had filler sequences (3/8). This information on T-DNA integration in cotton will facilitate functional genomic studies and further crop improvement.  相似文献   

11.
Transgenic plants of the aromatic shrub Lavandula latifolia (Lamiaceae) were produced using Agrobacterium tumefaciens-mediated gene transfer. Leaf and hypocotyl explants from 35–40-day old lavender seedlings were inoculated with the EHA105 strain carrying the nptII gene, as selectable marker, and the reporter gusA gene with an intron. Some of the factors influencing T-DNA transfer to L. latifolia explants were assessed. Optimal transformation rates (6.0 ± 1.6% in three different experiments) were obtained when leaf explants precultured for 1 day on regeneration medium were subcultured on selection medium after a 24 h co-cultivation with Agrobacterium. Evidence for stable integration was obtained by GUS assay, PCR and Southern hybridisation. More than 250 transgenic plants were obtained from 37 independent transformation events. Twenty-four transgenic plants from 7 of those events were successfully established in soil. -glucuronidase activity and kanamycin resistance assays in greenhouse-grown plants from two independent transgenic lines confirmed the stable expression of both gusA and nptII genes two years after the initial transformation. Evidence from PCR data, GUS assays and regeneration in the presence of kanamycin demonstrated a 1:15 Mendelian segregation of both transgenes among seedlings of the T1 progeny of two plants from one transgenic L. latifolia line.  相似文献   

12.
This paper describes the development of a reliable transformation protocol for onion and shallot (Allium cepa L.) which can be used year-round. It is based on Agrobacterium tumefaciens as a vector, with three-week old callus, induced from mature zygotic embryos, as target tissue. For the development of the protocol a large number of parameters were studied. The expression of the uidA gene coding for -glucuronidase was used as an indicator in the optimization of the protocol. Subspecies (onion and shallot) and cultivar were important factors for a successful transformation: shallot was better than onion and for shallot cv. Kuning the best results were obtained. Also, it was found that constantly reducing the size of the calli during subculturing and selection by chopping, thus enhancing exposure to the selective agent hygromycin, improved the selection efficiency significantly. Furthermore, callus induction medium and co-cultivation period showed a significant effect on successful stable transformation. The usage of different Agrobacterium strains, callus ages, callus sources and osmotic treatments during co-cultivation did not influence transformation efficiency. The highest transformation frequency (1.95%), was obtained with shallot cv. Kuning. A total of 11 independent transformed callus lines derived from zygotic embryos were produced: seven lines from shallot and four lines from onion. Large differences in plantlet production were observed among these lines. The best line produced over 90 plantlets. Via PCR the presence of the uidA and hpt (hygromycin phosphotransferase) genes could be demonstrated in these putative transformed plants. Southern hybridization showed that most lines originated from one transformation event. However, in one line plants were obtained indicating the occurrence and rescue of at least three independent transformation events. This suggested that T-DNA integration occurred in different cells within the callus. Most transgenic plants only had one copy of T-DNA integrated into their genomes. FISH performed on 12 plants from two different lines representing two integration events showed that original T-DNA integration had taken place on the distal end of chromosomes 1 or 5. A total of 83 transgenic plants were transferred to the greenhouse and these plants appeared to be diploid and normal in morphology.  相似文献   

13.
14.
Kim SR  An G 《Molecules and cells》2012,33(6):583-589
Agrobacterium tumefaciens is widely utilized for delivering a foreign gene into a plant's genome. We found the bacterial transposon Tn5393 in transgenic rice plants. Analysis of the flanking sequences of the transferred-DNA (T-DNA) identified that a portion of the Tn5393 sequence was present immediately next to the end of the T-DNA. Because this transposon was present in A. tumefaciens strain LBA4404, but not in EHA105 and GV3101, our findings indicated that Tn5393 was transferred from LBA4404 into the rice genome during the transformation process. We also noted that another bacterial transposon, Tn5563, is present in transgenic plants. Analyses of 331 transgenic lines revealed that 26.0% carried Tn5393 and 2.1% contained Tn5563. In most of the lines, an intact transposon was integrated into the T-DNA and transferred to the rice chromosome. More than one copy of T-DNA was introduced into the plants, often at a single locus. This resulted in T-DNA repeats of normal and transposon-carrying TDNA that generated deletions of a portion of the T-DNA, joining the T-DNA end to the bacterial transposon. Based on these data, we suggest that one should carefully select the appropriate Agrobacterium strain to avoid undesirable transformation of such sequences.  相似文献   

15.
建立了一种利用双T-DNA载体培育无选择标记转基因植物的方法.通过体外重组构建了双T-DNA双元载体pDLBRBbarm.载体中,选择标记nptⅡ基因和另一代表外源基因的bar基因分别位于2个独立的T-DNA.利用农杆菌介导转化烟草(Nicotiana tabacum L.),在获得的转化植株中,同时整合有nptⅡ基因和bar基因的频率为59.2%.对4个同时整合有nptⅡ和bar基因植株自交获得的T1代株系进行检测分析,发现在3个T1代株系2个T-DNA可以发生分离,其中约19.5%的转基因T1代植株中只存在bar基因而不带选择标记nptⅡ.这一结果说明双T-DNA载体系统能有效地用于培育无选择标记的转基因植物.研究还利用位于2个不同载体上的nptⅡ基因与 bar基因通过农杆菌介导共转化烟草,获得共转化植株的频率为20.0%~47.4%,低于使用双T-DNA转化的共转化频率.  相似文献   

16.
An efficient variety-independent method for producing transgenic eggplant (Solanum melongena L.) via Agrobacterium tumefaciens-mediated genetic transformation was developed. Root explants were transformed by co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBAL2 carrying the reporter gene beta-glucuronidase intron (GUS-INT) and the marker gene neomycin phosphotransferase (NPTII). Transgenic calli were induced in media containing 0.1 mg l(-1) thidiazuron (TDZ), 3.0 mg l(-1) N(6)-benzylaminopurine, 100 mg l(-1) kanamycin and 500 mg l(-1) cefotaxime. The putative transgenic shoot buds elongated on basal selection medium and rooted efficiently on Soilrite irrigated with water containing 100 mg l(-1) kanamycin sulphate. Transgenic plants were raised in pots and seeds subsequently collected from mature fruits. Histochemical GUS assay and polymerase chain reaction analysis of field-established transgenic plants and their offsprings confirmed the presence of the GUS and NPTII genes, respectively. Integration of T-DNA into the genome of putative transgenics was further confirmed by Southern blot analysis. Progeny analysis of these plants showed a pattern of classical Mendelian inheritance for both the NPTII and GUS genes.  相似文献   

17.
In the ongoing process of developing Brachypodium distachyon as a model plant for temperate cereals and forage grasses, we have developed a high-throughput Agrobacterium-mediated transformation system for a diploid accession. Embryogenic callus, derived from immature embryos of the accession BDR018, were transformed with Agrobacterium tumefaciens strain AGL1 carrying two T-DNA plasmids, pDM805 and pWBV-Ds-Ubi-bar-Ds. Transient and stable transformation efficiencies were optimised by varying the pre-cultivation period, which had a strong effect on stable transformation efficiency. On average 55% of 17-day-old calli co-inoculated with Agrobacterium regenerated stable transgenic plants. Stable transformation frequencies of up to 80%, which to our knowledge is the highest transformation efficiency reported in graminaceous species, were observed. In a study of 177 transgenic lines transformed with pDM805, all of the regenerated transgenic lines were resistant to BASTA((R)), while the gusA gene was expressed in 88% of the transgenic lines. Southern blot analysis revealed that 35% of the tested plants had a single T-DNA integration. Segregation analysis performed on progenies of ten selected T(0) plants indicated simple Mendelian inheritance of the two transgenes. Furthermore, the presence of two selection marker genes, bar and hpt, on the T-DNA of pWBV-Ds-Ubi-bar-Ds allowed us to characterize the developed transformation protocol with respect to full-length integration rate. Even when not selected for, full-length integration occurred in 97% of the transformants when using bialaphos as selection agent.  相似文献   

18.
During the process of crown gall tumorigenesis, Agrobacterium tumefaciens transfers part of the tumor-inducing (Ti) plasmid, the T-DNA, to a plant cell where it eventually becomes stably integrated into the plant genome. Directly repeated DNA sequences, called T-DNA borders, define the left and the right ends of the T-DNA. The T-DNA can be physically separated from the remainder of the Ti-plasmid, creating a 'binary vector' system; this system is frequently used to generate transgenic plants. Scientists initially thought that only those sequences located between T-DNA left and right borders transferred to the plant. More recently, however, several reports have appeared describing the integration of the non-T-DNA binary vector 'backbone' sequences into the genome of transgenic plants. In order to investigate this phenomenon, we constructed T-DNA binary vectors containing a nos-nptll gene within the T-DNA and a mas2'-gusA (β-glucuronidase) gene outside the T-DNA borders. We regenerated kanamycin-resistant transgenic tobacco plants and analyzed these plants for the expression of the vector-localized gusA gene and for the presence of binary vector backbone sequences. Approximately one-fifth of the plants expressed detectable GUS activity. PCR analysis indicated that approximately 75% of the plants contained the gusA gene. Southern blot analysis indicated that the vector backbone sequences could integrate into the tobacco genome linked either to the left or to the right T-DNA border. The vector backbone sequences could also integrate into the plant genome independently of (unlinked to) the T-DNA. Although we could readily detect T-strands containing the T-DNA within the bacterium, we could not detect T-strands containing only the vector backbone sequences or these vector sequences linked to the T-DNA.  相似文献   

19.
20.
Agrobacterium-mediated sorghum transformation frequency has been enhanced significantly via medium optimization using immature embryos from sorghum variety TX430 as the target tissue. The new transformation protocol includes the addition of elevated copper sulfate and 6-benzylaminopurine in the resting and selection media. Using Agrobacterium strain LBA4404, the transformation frequency reached over 10% using either of two different selection marker genes, moPAT or PMI, and any of three different vectors in large-scale transformation experiments. With Agrobacterium strain AGL1, the transformation frequencies were as high as 33%. Using quantitative PCR analyses of 1,182 T0 transgenic plants representing 675 independent transgenic events, data was collected for T-DNA copy number, intact or truncated T-DNA integration, and vector backbone integration into the sorghum genome. A comparison of the transformation frequencies and molecular data characterizing T-DNA integration patterns in the transgenic plants derived from LBA4404 versus AGL1 transformation revealed that twice as many transgenic high-quality events were generated when AGL1 was used compared to LBA4404. This is the first report providing molecular data for T-DNA integration patterns in a large number of independent transgenic plants in sorghum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号