首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of adenyl-5'-yl imidodiphosphate and PPi with actomyosin   总被引:1,自引:0,他引:1  
We previously studied the equilibrium binding of ADP, adenyl-5'-yl imidodiphosphate (AMP-PNP), and inorganic pyrophosphate (PPi) to actomyosin-subfragment 1 (acto.S-1) and found that AMP-PNP and PPi bind considerably more weakly to acto.S-1 than does ADP. In this study, we investigated the pre-steady-state kinetics of the binding of AMP-PNP and PPi to acto.S-1 and of S-1.AMP-PNP and S-1.PPi to actin to determine if the pre-steady-state kinetic data are consistent with our previous equilibrium data. We find that the kinetic data are consistent with the equilibrium data and agree with a model in which acto.S-1 forms a collision intermediate with the ATP analog, followed by a slower conformational change to a ternary complex that rapidly dissociates into actin and the S-1.ATP analog. Although this scheme fits the AMP-PNP as well as the PPi data, we find that the isomerization of the collision intermediate to the ternary complex is approximately 10 times faster in the presence of PPi than in the presence of AMP-PNP, which is consistent with previous physiological studies (Schoenberg, M., and Eisenberg, E. (1985) Biophys. J. 48, 863-872).  相似文献   

2.
J Sleep  H Glyn 《Biochemistry》1986,25(5):1149-1154
Adenosine 5'-diphosphate (ADP), inorganic pyrophosphate (PPi), and adenyl-5'-yl imidodiphosphate (AMPPNP) act as competitive inhibitors of the ATPase of myofibrils and actomyosin subfragment 1 (acto-S1). At I = 0.2 M, pH 7, and 15 degrees C, the inhibition constants for rabbit myofibrils are 0.17, 3, and 5 mM, respectively; the values for frog myofibrils at 0 degrees C are very similar, being 0.22, 1.5, and 2.5 mM. The inhibition constant of AMPPNP is about 2 orders of magnitude larger than the reported dissociation constant for fibers [Marston, S. B., Rodger, C. D., & Tregear, R. T. (1976) J. Mol. Biol. 104, 263-276]. A possible reason for this difference is that AMPPNP binding results in the dissociation of one head of each myosin molecule. The inhibition constants for rabbit acto-S1 cross-linked with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide measured under the same conditions were 0.12, 2.6, and 3.5 mM for ADP, PPi, and AMPPNP, respectively. The inhibition of cross-linked and native acto-S1 was compared at low ionic strength and was found to be similar. The value for ADP is very similar to reported values of the dissociation constant whereas the inhibition constants for AMPPNP and PPi are an order of magnitude weaker [Greene, L. E., & Eisenberg, E. (1980) J. Biol. Chem. 255, 543-548].  相似文献   

3.
Sarcoplasmic reticulum ATPase has been found to cleave the ATP analog adenyl-5'-yl imidodiphosphate in a calcium-dependent reaction. The reaction products were determined by 31P NMR to be inorganic phosphate and adenyl-5'-yl phosphoramidate (AMP-PN). AMP-PNP hydrolysis, like ATP hydrolysis, drives active Ca2+ accumulation by sarcoplasmic reticulum vesicles.  相似文献   

4.
Forskolin activated adenylate cyclase of purified rat adipocyte membranes in the absence of exogenous guanine nucleotides. Guanyl-5'-yl imidodiphosphate (Gpp(NH)p) inhibited the forskolin-activated cyclase immediately upon addition of the nucleotide at concentrations too low to activate adenylate cyclase (10(-9) to 10(-7) M). Inhibition seen with a very high concentration of Gpp(NH)p (10(-4) M) lasted for 3-4 min and was followed by an increase in the synthetic rate which remained constant for at least 15 min. The length of the transient inhibition did not vary with forskolin concentrations above 0.05 microM but low Gpp(NH)p (10(-8) M) exhibited a lengthened (6-7 min) inhibitory phase. The transient inhibitory effects of Gpp(NH)p were eliminated by 10(-7) M isoproterenol, high (40 mM) Mg2+, or preincubation with Gpp(NH)p in the absence of forskolin. While forskolin stimulated fat cell cyclase in the presence of Mn2+, this ion blocked the inhibitory effects of Gpp(NH)p. The well documented inhibitory effects of GTP on the fat cell adenylate cyclase system were also observed in the presence of forskolin. However, the inhibition by GTP is not transitory. These findings indicate that Gpp(NH)p regulation of forskolin-stimulated cyclase has at least two components: 1) an inhibitory component which acts through an undetermined mechanism and which acts immediately to decrease cyclase activity; and 2) an activating component which modulates the inhibited cyclase activity through the guanine nucleotide regulatory protein.  相似文献   

5.
The proton and metal complexes of adenyl-5''-yl imidodiphosphate.   总被引:2,自引:0,他引:2       下载免费PDF全文
The formation constants of the complexes of adenyl-5'-yl imidodiphosphate with H+ Mg2+, Ca2+ and a number of bivalent transition-metal ions were measured potentionmetrically. The complexes are generally a little more stable than the analogous complexes of ATP. By measuring the formation constants at two temperatures, this increase in stability was shown to result from an increased enthalpy change on complex-formation.  相似文献   

6.
Beef heart mitochondrial ATPase (F1) catalyzes the hydrolysis of the ATP analog adenyl-5-yl imidodiphosphate (AMP-PNP). The reaction products are inorganic phosphate and adenyl-5-yl phosphoramidate (AMP-PN) as determined by HPLC analysis. The hydrolysis occurs in both the presence and absence of added divalent metal ions and is stimulated by potassium. The kinetic properties of the hydrolytic reaction depend markedly on the identity of the added divalent metal. GMP-PNP and AMP-CPP are also hydrolyzed, while AMP-PCP is not. Adenyl-5-yl phosphoramidate is a potent effect of beef heart mitochondrial ATPase activity. Based on these data, a reinterpretation of work based on the assumption that AMP-PNP is not hydrolyzed is presented.  相似文献   

7.
The binding of Mg2+ X adenyl-5'-yl imidodiphosphate (Mg2+ X AMP-PNP) to rabbit skeletal myofibrils has been measured in aqueous solution and in 50% ethylene glycol in the presence and absence of Ca2+. In water, the observed binding was weak with less than half the calculated myosin active sites filled even at 1 mM Mg2+ X AMP-PNP. In 50% ethylene glycol, the binding is at least 100-fold tighter and extrapolates to the expected number of binding sites. This is contrasted to the small change seen for Mg2+ X ADP binding between the same sets of conditions. This difference between Mg2+ X AMP-PNP and Mg2+ X ADP is attributed to the strong coupling of Mg2+ X AMP-PNP binding to dissociation of myosin cross-bridges. The Ca2+ sensitivity of Mg2+ X AMP-PNP binding in 50% ethylene glycol is taken as further evidence of the thermodynamic coupling of Mg2+ X AMP-PNP binding to cross-bridge dissociation. In addition, the binding of Mg2+ X AMP-PNP in 50% ethylene glycol is biphasic while Mg2+ X ADP binding under the same conditions is not. The biphasic Mg2+ X AMP-PNP binding could be caused by either the presence of two or more classes of cross-bridges or by negative cooperativity, but the presence of only a single class of Mg2+ X ADP-binding sites implies that if multiple classes of sites are involved, they do not simply differ in steric hindrance or accessibility of the binding site as a whole. The importance of using purified AMP-PNP in the study of actomyosin X AMP-PNP complexes is discussed.  相似文献   

8.
M A Geeves 《Biochemistry》1989,28(14):5864-5871
The equilibrium and dynamics of the interaction between actin, myosin subfragment 1 (S1), and ADP have been investigated by using actin which has been covalently labeled at Cys-374 with a pyrene group. The results are consistent with actin binding to S1.ADP (M.D) in a two-step reaction, A + M.D K1 equilibrium A-M.D K2 equilibrium A.M.D, in which the pyrene fluorescence only monitors the second step. In this model, K1 = 2.3 X 10(4) M-1 (k+1 = 4.6 X 10(4) M-1 s-1) and K2 = 10 (k+2 less than or equal to 4 s-1); i.e., both steps are relatively slow compared to the maximum turnover of the ATPase reaction. ADP dissociates from both M.D and A-M.D at 2 s-1 and from A.M.D at greater than or equal to 500 s-1; therefore, actin only accelerates the release of product from the A.M.D state. This model is consistent with the actomyosin ATPase model proposed by Geeves et al. [(1984) J. Muscle Res. Cell Motil. 5, 351]. The results suggest that A-M.D cannot break down at a rate greater than 4 s-1 by dissociation of ADP, by dissociation of actin, or by isomerizing to A.M.D. It is therefore unlikely to be significantly occupied in a rapidly contracting muscle, but it may have a role in a muscle contracting against a load where the ATPase rate is markedly inhibited. Under these conditions, this complex may have a role in maintaining tension with a low ATP turnover rate.  相似文献   

9.
The interaction of Mg2+ ions with adenyl-5'-yl imidodiphosphate, AMP-P(NH)P, has been studied at basic and acidic pH values by phosphorus magnetic resonance spectroscopy in aqueous solution. The results suggest that Mg2+ binds simultaneously to one (or both) of the two free oxygen atoms of the beta-phosphate moiety and to the nitrogen atom of the phosphate chain (P alpha-O-P beta-N-P gamma). The interaction arises from 1: 1 complexing of Mg2+ to AMP-P(NH)P. The mode of the Mg2+ binding on the phosphate chain remains the same at both basic and acidic pH values. As in the case of ATP and ADP, the association of Mg2+ reduces the pK by about 1.5 units. On the other hand phosphorus titration curves showed that when the phosphate chain does not possess the regular periodicity (O-P alpha-O-P beta-X-P gamma-O,X not equal to O) as in the case of ATP, protonation of the terminal phosphate group may induce a 31P chemical shift variation less important for this group than for the preceding one.  相似文献   

10.
S H Lin  H C Cheung 《Biochemistry》1991,30(17):4317-4322
We previously reported that the nucleotide complex of myosin subfragment 1, S1.epsilon ADP, exists in two states on the basis of the temperature dependence of the fluorescence decay of bound 1,N6-ethenoadenosine diphosphate (epsilon ADP) [Aguirre, R., Lin. S.-H., Gonsoulin, F., Wang, C.-K., & Cheung, H.C. (1989) Biochemistry 28, 799-809]. We have extended the previous study of the equilibrium between the two states, S1L.ADP in equilibrium S1H.ADP, by using a fluorescently labeled myosin S1 (S1-AF). In S1 alkylated with IAF [5-(iodoacetamido)fluorescein], the decay of the label emission was biexponential both in the presence and absence of ADP and/or actin. In the presence of ADP, the two decay times were 4.30 (alpha 1 = 0.55) and 0.80 ns (alpha 2 = 0.45) at 12.4 degrees C, in a medium containing 60 mM KCl, 30 mM TES (pH 7.5), and 2 mM MgCl2. The steady-state fluorescence intensities of S1-AF, (S1-AF).ADP, acto.(S1-AF), and acto.(S1-AF).ADP were dependent on temperature over the range of 5-30 degrees C. By combining lifetime and steady-state intensity data, we obtained for the two-state transition (S1-AF)L.ADP in equilibrium (S1-AF)H.ADP the following parameters: delta H degrees = 16.1 kcal/mol (67.3 kJ/mol) and delta S degrees = 55.8 cal/(deg.mol) [233.5 J/(deg.mol)], in agreement with previous results obtained with epsilon ADP. The delta H degrees values for the two-state transition of S1-AF, acto.(S1-AF), and acto.(S1-AF).ADP are 13.0, 21.6, and 5.2 kcal/mol, respectively. The corresponding delta S degrees values are 46.9, 79.5, and 17.4 cal/(deg.mol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Dissociation of the DNAse-I . actin complex by formamide   总被引:3,自引:0,他引:3  
Rabbit skeletal muscle actin labeled with 125 iodine by an enzymic method is shown to be capable of polymerization and to bind to matrix-bound pancreatic DNAse I like unlabeled G-actin. It was used to demonstrate that actin can be released from DNAse-I-agarose by 35--40% formamide. Actin which was only shortly exposed to this solvent was able to bind again to DNAse I and to form filaments indicating that it has been recovered functionally intact from the affinity matrix.  相似文献   

12.
Zhou X  Morris EP  Lehrer SS 《Biochemistry》2000,39(5):1128-1132
Troponin I (TnI) is the component of the troponin complex, TnI, TnC, TnT, that is responsible for inhibition of actomyosin ATPase activity. Using the fluorescence of pyrene-labeled tropomyosin (Tm), we probed the interaction of TnI and TnIC with Tm on the reconstituted muscle thin filament. The results indicate that TnI and TnIC(-Ca(2+)) bind specifically and strongly to actin-Tm with a stoichiometry of 1 TnI or 1 TnIC/1 Tm/7 actin, in agreement with previous results. The binding of myosin heads (S1) to actin-Tm at low levels of saturation caused TnI and TnIC to dissociate from actin-Tm. These results are interpreted in terms of the S1-binding state allosteric-cooperative model of the actin-Tm thin filament, closed/open. Thus, TnI and TnIC(-Ca(2+)) bind to the closed state of actin-Tm and their binding is greatly weakened in the S1-induced open state, indicating that they act as allosteric inhibitors. The fluorescence change and the stoichiometry indicate that the TnI-binding site is composed of regions from both actin and Tm probably in the vicinity of Cys 190.  相似文献   

13.
Binding of ADP and 5'-adenylyl imidodiphosphate to rabbit muscle myofibrils   总被引:2,自引:0,他引:2  
The binding of [3H]ADP and [3H]adenyl-5'-yl-imidodiphosphate ([3H]AMP-PNP) to rabbit skeletal myofibrils was measured at 25 and 7 degrees C, mu = 0.12 M, using [14C]mannitol as a volume marker. We found that ADP bound to myosin heads in overlap with a binding constant of about 10(4) M-1, similar to the value we previously obtained in vitro with acto.S-1. The binding of AMP-PNP to myosin heads was measured both in and out of overlap. The affinity of AMP-PNP to the heads out of overlap was similar to that obtained in vitro with S-1 alone. The binding of AMP-PNP to the myosin heads in overlap was much weaker. We could fit these data with a binding constant of about 1 x 10(3) M-1, assuming a single population of cross-bridges and 1 mol of AMP-PNP bound per mol of myosin head. This value was reduced by a factor of 2 when we corrected for nonspecific binding. It was also possible to fit the data assuming two equal populations of cross-bridges with one of the populations binding AMP-PNP about 5-fold more strongly than the other population. Therefore, for at least half of the cross-bridges in overlap, the binding of AMP-PNP is almost as weak as the value of 3 x 10(2) M-1 we previously measured for the acto.S-1 complex in vitro (Biosca, J. A., Greene, L. E., and Eisenberg, E. (1986) J. Biol. Chem. 261, 9793-9800).  相似文献   

14.
[3H]Forskolin binds to human platelet membranes in the presence of 5 mM MgCl2 with a Bmax of 125 fmol/mg of protein and a Kd of 20 nM. The Bmax for [3H]forskolin binding is increased to 455 and 425 fmol/mg of protein in the presence of 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and 10 mM NaF, respectively. The increase in the Bmax for [3H]forskolin in the presence of Gpp(NH)p or NaF is not observed in the absence of MgCl2. The EC50 values for the increase in the number of binding sites for [3H]forskolin by Gpp(NH)p and NaF are 600 nM and 4 mM, respectively. The EC50 value for Gpp(NH)p to increase the number of [3H]forskolin binding sites is reduced to 35 mM and 150 nM in the presence of 50 microM PGE1 or PGD2, respectively. The increase in the number of [3H]forskolin binding sites observed in the presence of NaF is unaffected by prostaglandins. The binding of [3H]forskolin to membranes that are preincubated with Gpp(NH)p for 120 min or assayed in the presence of PGE1 reaches equilibrium within 15 min. In contrast, a slow linear increase in [3H]forskolin binding is observed over a period of 60 min when Gpp(NH)p and [3H]forskolin are added simultaneously to membranes. A slow linear increase in adenylate cyclase activity is also observed as a result of preincubating membranes with Gpp(NH)p. In human platelet membranes, agents that activate adenylate cyclase via the guanine nucleotide stimulatory protein (Ns) increase the number of binding sites for [3H]forskolin in a magnesium-dependent manner. This is consistent with the high affinity binding sites for [3H]forskolin being associated with the formation of an activated complex of the Ns protein and adenylate cyclase. This state of the adenylate cyclase may be representative of that formed by a synergistic combination of hormones and forskolin.  相似文献   

15.
A nucleotide phosphohydrolase-resistant analog of GTP, guanyl-5′-yl imidodiphosphate [GMP-P(NH)P], caused stimulation of basal adenylate cyclase activity of cardiac sarcolemma when ethylene glycol bis(β-aminoethyl ether)- N,N′-tetraacetic acid (EGTA) was absent in the assay mixture, whereas the nucleotide, in the presence of EGTA, inhibited basal cyclase activity. GTP, GDP, GMP, and guanosine failed to show such an inhibition of basal enzyme activity. The degree of both stimulatory and inhibitory effects of GMP-P(NH)P depended on the concentration of magnesium ions. The apparent affinities toward magnesium ions of the metal binding site and toward MgATP2? of the catalytic site of control and ?GMP-P(NH)P-inhibited” enzyme were similar. Isoproterenol reversed the inhibitory effect, whereas calcium ions failed to revert it. Both in the presence and absence of EGTA, GMP-P(NH)P plus isoproterenol caused a synergistic stimulation of the enzyme activity, the degree of stimulation being lower with EGTA present. Exposure of sarcolemma to GMP-P(NH)P (with and without isoproterenol and in the absence and presence of EGTA) caused an activation of adenylate cyclase, the degree of activation being higher with isoproterenol present. The activated enzyme displayed increased affinity toward Mg2+ at the metal binding site. When activated enzyme preparations were assayed in the presence of EGTA, reversal of the activated state was observed in the case of the GMP-P(NH)P-activated enzyme but not in the case of the GMP-P(NH)P + isoproterenol-activated enzyme.  相似文献   

16.
Equilibrium binding studies were used to determine the binding constant of vanadate ion (Vi), to the complex of actomyosin subfragment 1 (S1) with ADP and Vi and of actin to the myosin S1.ADP.Vi complex. The proteins used were obtained from rabbit skeletal muscle. Pre-steady-state measurements were also performed to determine the rates of Vi association and dissociation from the actomyosin S1.ADP.Vi complex. Using these measured values in a simple model, the steady-state actomyosin S1 ATPase activity was predicted over a range of Vi concentrations. This model predicted that Vi would have little effect on the actomyosin S1 ATPase activity. In agreement with this prediction, the measured ATPase activity of actomyosin S1 was not greatly inhibited by Vi, except at high concentrations at which polymeric species of Vi may occur (greater than 900 microM).  相似文献   

17.
18.
19.
20.
M Miki  T Hozumi 《Biochemistry》1991,30(22):5625-5630
A chemical modification of G-actin with (m-maleimidobenzoyl)-N-hydroxysuccinimide ester (MBS) impairs actin polymerization [Bettache, N., Bertrand, R., & Kassab, R. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6028-6032]. MBS-actin recovers the ability to polymerize when a 2-fold molar excess of phalloidin is added in 30 mM KCl/2 mM MgCl2/20 mM Tris-HCl (pH 7.6). The resulting polymer (MBS-P-actin) is highly potentiated so that it activates the Mg(2+)-ATPase of S1 more strongly than native F-actin. The affinity of MBS-P-actin for S1 in the presence of ATP (KATPase) is about four times higher than that of native F-actin, although the maximum velocity at infinite actin concentration (Vmax) is almost the same. This high activation is not due to a cross-linking between MBS-P-actin and the S1 heavy chain, since no substantial amount of cross-linking was observed in SDS gel electrophoresis. Direct binding studies and ATPase measurements showed that the modification of actin with MBS impairs the binding of tropomyosin. Tropomyosin binding can be improved considerably by the addition of troponin. However, the regulation mechanism of the acto-S1 ATPase activity by troponin-tropomyosin is damaged. The addition of troponin-tropomyosin reduces the S1 ATPase activation by MBS-P-actin to the same level as that of native F-actin in 30 mM KCl/2.5 mM ATP/2 mM MgCl2, but there is no difference in the ATPase activation in the presence and absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号