首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The ARF6 GTPase mediates cell shape changes in interphase cells through its effects on membrane cycling and actin remodeling. In this study, we focus our attention on the dynamics of cell division and present evidence supporting a novel role for ARF6 during cleavage furrow ingression and cytokinesis. We demonstrate that endogenous ARF6 redistributes during mitosis and concentrates near the cleavage furrow during telophase. Constitutively activated ARF6 localizes to the plasma membrane at the site of cleavage furrow ingression and midbody formation, and dominant negative ARF6 remains cytoplasmic. By using a novel pull-down assay for ARF6-GTP, we find an abrupt, but transient, increase in ARF6-GTP levels as cells progress through cytokinesis. Whereas high levels of expression of a GTPase-defective ARF6 mutant induce aberrant phenotypes in cells at cytokinesis, cells expressing low levels of ARF6 mutants do not display a significant mitotic delay or cytokinesis defect, presumably due to compensatory or redundant mechanisms that allow cytokinesis to proceed when the ARF6 GTPase cycle is disrupted. Finally, actin accumulation and phospholipid metabolism at the cleavage furrow are unchanged in cells expressing ARF6 mutants, suggesting that ARF6 may be involved in membrane remodeling during cytokinesis via effector pathways that are distinct from those operative in interphase cells.  相似文献   

2.
Unperturbed mitosis is a prerequisite for the generation of two genetically identical daughter cells. Nucleolar-spindle associated protein (NuSAP) is an important mitotic regulator. The activity of NuSAP is essential for a variety of cellular events that occur during mitosis starting from spindle assembly to cytokinesis. In addition to playing crucial roles during mitosis, NuSAP has been in the spotlight recently due to different studies exhibiting its importance in embryogenesis and cancer. In this review, we have extensively mined the current literature and made connections between different studies involving NuSAP. Importantly, we have assembled data pertaining to NuSAP from several proteomic studies and analyzed it thoroughly. Our review focuses on the role of NuSAP in mitosis and cancer, and brings to light several unanswered questions regarding the regulation of NuSAP in mitosis and its role in carcinogenesis.  相似文献   

3.
In mammalian cells the Golgi apparatus undergoes an extensive disassembly process at the onset of mitosis that is believed to facilitate equal partitioning of this organelle into the two daughter cells. However, the underlying mechanisms for this fragmentation process are so far unclear. Here we have investigated the role of the ADP-ribosylation factor-1 (ARF1) in this process to determine whether Golgi fragmentation in mitosis is mediated by vesicle budding. ARF1 is a small GTPase that is required for COPI vesicle formation from the Golgi membranes. Treatment of Golgi membranes with mitotic cytosol or with purified coatomer together with wild type ARF1 or its constitutive active form, but not the inactive mutant, converted the Golgi membranes into COPI vesicles. ARF1-depleted mitotic cytosol failed to fragment Golgi membranes. ARF1 is associated with Golgi vesicles generated in vitro and with vesicles in mitotic cells. In addition, microinjection of constitutive active ARF1 did not affect mitotic Golgi fragmentation or cell progression through mitosis. Our results show that ARF1 is active during mitosis and that this activity is required for mitotic Golgi fragmentation.  相似文献   

4.
Actin filament dynamics play a critical role in mitosis and cytokinesis. LIM motif-containing protein kinase 1 (LIMK1) regulates actin reorganization by phosphorylating and inactivating cofilin, an actin-depolymerizing and -severing protein. To examine the role of LIMK1 and cofilin during the cell cycle, we measured cell cycle-associated changes in the kinase activity of LIMK1 and in the level of cofilin phosphorylation. Using synchronized HeLa cells, we found that LIMK1 became hyperphosphorylated and activated in prometaphase and metaphase, then gradually returned to the basal level as cells entered into telophase and cytokinesis. Although Rho-associated kinase and p21-activated protein kinase phosphorylate and activate LIMK1, they are not likely to be involved in mitosis-specific activation and phosphorylation of LIMK1. Immunoblot and immunofluorescence analyses using an anti-phosphocofilin-specific antibody revealed that the level of cofilin phosphorylation, similar to levels of LIMK1 activity, increased during prometaphase and metaphase then gradually declined in telophase and cytokinesis. Ectopic expression of LIMK1 increased the level of cofilin phosphorylation throughout the cell cycle and induced the formation of multinucleate cells. These results suggest that LIMK1 is involved principally in control of mitosis-specific cofilin phosphorylation and that dephosphorylation and reactivation of cofilin at later stages of mitosis play a critical role in cytokinesis of mammalian cells.  相似文献   

5.
Centrosomes nucleate microtubules and contribute to mitotic spindle organization and function. They also participate in cytokinesis and cell cycle progression in ways that are poorly understood. Here we describe a novel human protein called centriolin that localizes to the maternal centriole and functions in both cytokinesis and cell cycle progression. Centriolin silencing induces cytokinesis failure by a novel mechanism whereby cells remain interconnected by long intercellular bridges. Most cells continue to cycle, reenter mitosis, and form multicellular syncytia. Some ultimately divide or undergo apoptosis specifically during the protracted period of cytokinesis. At later times, viable cells arrest in G1/G0. The cytokinesis activity is localized to a centriolin domain that shares homology with Nud1p and Cdc11p, budding and fission yeast proteins that anchor regulatory pathways involved in progression through the late stages of mitosis. The Nud1p-like domain of centriolin binds Bub2p, another component of the budding yeast pathway. We conclude that centriolin is required for a late stage of vertebrate cytokinesis, perhaps the final cell cleavage event, and plays a role in progression into S phase.  相似文献   

6.
Survivin and Plk1 kinase are important mediators of cell survival that are required for chromosome alignment, cytokinesis, and protection from apoptosis. Interference with either survivin or Plk1 activity manifests many similar outcomes: prometaphase delay/arrest, multinucleation, and increased apoptosis. Moreover, the expression of both survivin and Plk1 is deregulated in cancer. Given these similarities, we speculated that these two proteins may cooperate during mitosis and/or in cell death pathways. Here we report that survivin and Plk1 interact during mitosis and that Plk1 phosphorylates survivin at serine 20. Importantly, we find that overexpression of a non-phosphorylatable version, S20A, is unable to correct chromosomes connected to the spindle in a syntelic manner during prometaphase and allows cells harboring these maloriented chromosomes to enter anaphase, evading the spindle tension checkpoint. By contrast, the constitutive phosphomimic, S20D, completes congression and division ahead of schedule and, unlike S20A, is able to support proliferation in the absence of the endogenous protein. Despite the importance of this residue in mitosis, its mutation does not appear to affect the anti-apoptotic activity of survivin in response to TRAIL. Together, these data suggest that phosphorylation of survivin at Ser20 by Plk1 kinase is essential for accurate chromosome alignment and cell proliferation but is dispensable for its anti-apoptotic activity in cancer cells.  相似文献   

7.
Endocytosis resumes during late mitosis and is required for cytokinesis   总被引:1,自引:0,他引:1  
Recent work has underscored the importance of membrane trafficking events during cytokinesis. For example, targeted membrane secretion occurs at the cleavage furrow in animal cells, and proteins that regulate endocytosis also influence the process of cytokinesis. Nonetheless, the prevailing dogma is that endosomal membrane trafficking ceases during mitosis and resumes after cell division is complete. In this study, we have characterized endocytic membrane trafficking events that occur during mammalian cell cytokinesis. We have found that, although endocytosis ceases during the early stages of mitosis, it resumes during late mitosis in a temporally and spatially regulated pattern as cells progress from anaphase to cytokinesis. Using fixed and live cell imaging, we have found that, during cleavage furrow ingression, vesicles are internalized from the polar region and subsequently trafficked to the midbody area during later stages of cytokinesis. In addition, we have demonstrated that cytokinesis is inhibited when clathrin-mediated endocytosis is blocked using a series of dominant negative mutants. In contrast to previous thought, we conclude that endocytosis resumes during the later stages of mitosis, before cytokinesis is completed. Furthermore, based on our findings, we propose that the proper regulation of endosomal membrane traffic is necessary for the successful completion of cytokinesis.  相似文献   

8.
Eukaryotic cell division requires the co-ordinated assembly and disassembly of the mitotic spindle, accurate chromosome segregation and temporal control of cytokinesis to generate two daughter cells. While the absolute details of these processes differ between organisms, there are evolutionarily conserved core components common to all eukaryotic cells, whose identification will reveal the key processes that control cell division. Glycogen synthase kinase 3 (GSK-3) is a major protein kinase found throughout the eukaryotes and regulates many processes, including cell differentiation, growth, motility and apoptosis. In animals, GSK-3 associates with mitotic spindles and its inhibition causes mis-regulation of chromosome segregation. Two suppressor screens in yeast point to a more general effect of GSK-3 on cell division, however the direct role of GSK-3 in control of mitosis has not been explored outside the animal kingdom. Here we report that the Dictyostelium discoideum GSK-3 orthologue, GskA, associates with the mitotic spindle during cell division, as seen for its mammalian counterparts. Dictyostelium possesses only a single GSK-3 gene that can be deleted to eliminate all GSK-3 activity. We found that gskA-null mutants failed to elongate their mitotic spindle and were unable to divide in shaking culture, but have no chromosome segregation defect. These results suggest further conservation for the role of GSK-3 in the regulation of spindle dynamics during mitosis, but also reveal differences in the mechanisms ensuring accurate chromosome segregation.  相似文献   

9.
Myosin light chain kinase (MLCK) is thought to regulate the contractile activity in smooth and non-muscle cells, and may play an important role in controlling the reorganization of the actin-myosin cytoskeleton during cell division. To test this hypothesis we have microinjected the 61-kD catalytic fragment of MLCK into mitotic cells, and examined the effects of unregulated MLCK activity on cell division. The microinjection of active 61 kD causes both a significant delay in the transit time from nuclear envelope breakdown to anaphase onset, and an increase in motile surface activity during and after metaphase. Control experiments with intact MLCK or with inactive catalytic fragment suggest that these effects are specifically induced by the unregulated myosin light chain kinase activity. Immunofluorescence analysis suggests that delays in mitosis are coupled to disruptions of spindle structures, while increased surface motility may be related to changes in the organization of actin and myosin at the cell cortex. Most importantly, despite the expression of strong phenotypes, 61 kD-injected cells still form functional cleavage furrows that progress through cytokinesis at rates identical to those of control cells. Together, these results suggest that the activity of MLCK can affect mitosis and cortical activities, however additional control mechanisms are likely involved in the regulation of cytokinesis.  相似文献   

10.
DEF-1/ASAP1 is an ADP-ribosylation factor GTPase-activating protein (ARF GAP) that localizes to focal adhesions and is involved in cytoskeletal regulation. In this paper, we use a cell-based ARF GAP assay to demonstrate that DEF-1 functions as a GAP for ARF1 and not ARF6 in vivo. This degree of substrate preference was unique to DEF-1, as other ARF GAP proteins, ACAP1, ACAP2, and ARFGAP1, were able to function on both ARF1 and ARF6. Since transient overexpression of DEF-1 has been shown to interfere with focal adhesion formation and platelet-derived growth factor-induced membrane ruffling, we investigated whether NIH 3T3 cells stably expressing DEF-1 have altered cell motility. Here we report that ectopic DEF-1 enhances cell migration toward PDGF as well as IGF-1. This chemotactic effect appears to result from a general increase in cell motility, as DEF-1-expressing cells also exhibit enhanced levels of basal and chemokinetic motility. The increase in cell motility is dependent on DEF-1 GAP activity, since a DEF-1 mutant lacking the GAP domain failed to stimulate motility. This suggests that DEF-1 alters cell motility through the deactivation of ARF1. In contrast, the inhibition of cell spreading by DEF-1 was not dependent on GAP activity, indicating that spreading and motility are altered by DEF-1 through different pathways.  相似文献   

11.
In eukaryotes, mitogen-activated protein kinases (MAPKs) are part of signaling modules that transmit diverse stimuli, such as mitogens, developmental cues, or various stresses. Here, we report a novel alfalfa MAPK, Medicago MAP kinase 3 (MMK3). Using an MMK3-specific antibody, we detected the MMK3 protein and its associated activity only in dividing cells. The MMK3 protein could be found during all stages of the cell cycle, but its protein kinase activity was transient in mitosis and correlated with the timing of phragmoplast formation. Depolymerization of microtubules by short treatments with the drug amiprophosmethyl during anaphase and telophase abolished MMK3 activity, indicating that intact microtubules are required for MMK3 activation. During anaphase, MMK3 was found to be concentrated in between the segregating chromosomes; later, it localized at the midplane of cell division in the phragmoplast. As the phragmoplast microtubules were redistributed from the center to the periphery during telophase, MMK3 still localized to the whole plane of division; thus, phragmoplast microtubules are not required to keep MMK3 at this location. Together, these data strongly support a role for MMK3 in the regulation of plant cytokinesis.  相似文献   

12.
EVI5 has been shown to be a novel centrosomal protein in interphase cells. In this report, we demonstrate using immunofluorescence microscopy that EVI5 has a dynamic distribution during mitosis, being associated with the mitotic spindle through anaphase and remaining within the midzone and midbody until completion of cytokinesis. Knockdown of EVI5 using siRNA results in a multinucleate phenotype, which is consistent with an essential role for this protein in the completion of cytokinesis. The EVI5 protein also undergoes posttranslational modifications during the cell cycle, which involve phosphorylation in early mitosis and proteolytic cleavage during late mitosis and cytokinesis. Since the subcellular distribution of the EVI5 protein was similar to that characteristic of chromosomal passenger proteins during the terminal stages of cytokinesis, we used immunoprecipitation and GST pull-down approaches to demonstrate that EVI5 is associated with the aurora B kinase protein complex (INCENP, aurora B kinase and survivin). Together, these data provide evidence that EVI5 is an essential component of the protein machinery facilitating the final stages of cell septation at the end of mitosis.  相似文献   

13.
In budding yeast, the Clb2 mitotic cyclin initiates a signaling network that negatively regulates polar bud growth during mitosis. This signaling network appears to require the function of a Clb2-binding protein called Nap1, the Cdc42 GTPase, and two protein kinases called Gin4 and Cla4. In this study, we demonstrate that the Elm1 kinase also plays a role in the control of bud growth during mitosis. Cells carrying a deletion of the ELM1 gene undergo a prolonged mitotic delay, fail to negatively regulate polar bud growth during mitosis, and show defects in septin organization. In addition, Elm1 is required in vivo for the proper regulation of both the Cla4 and Gin4 kinases and interacts genetically with Cla4, Gin4, and the mitotic cyclins. Previous studies have suggested that Elm1 may function to negatively regulate the Swe1 kinase. To further understand the functional relationship between Elm1 and Swe1, we have characterized the phenotype of Deltaelm1 Deltaswe1 cells. We found that Deltaelm1 Deltaswe1 cells are inviable at 37 degrees C and that a large proportion of Deltaelm1 Deltaswe1 cells grown at 30 degrees C contain multiple nuclei, suggesting severe defects in cytokinesis. In addition, we found that Elm1 is required for the normal hyperphosphorylation of Swe1 during mitosis. We propose a model in which the Elm1 kinase functions in a mitotic signaling network that controls events required for normal bud growth and cytokinesis, while the Swe1 kinase functions in a checkpoint pathway that delays nuclear division in response to defects in these events.  相似文献   

14.
In mammalian cells, the centrosome consists of a pair of centrioles and amorphous pericentriolar material. The pair of centrioles, which are the core components of the centrosome, duplicate once per cell cycle. Centrosomes play a pivotal role in orchestrating the formation of the bipolar spindle during mitosis. Recent studies have linked centrosomal activity on centrioles or centriole-associated structures to cytokinesis and cell cycle progression through G1 into the S phase. In this study, we have identified centrobin as a centriole-associated protein that asymmetrically localizes to the daughter centriole. The silencing of centrobin expression by small interfering RNA inhibited centriole duplication and resulted in centrosomes with one or no centriole, demonstrating that centrobin is required for centriole duplication. Furthermore, inhibition of centriole duplication by centrobin depletion led to impaired cytokinesis.  相似文献   

15.
Epithelial cell scattering encompasses the dissolution of intercellular junctions, cell-cell dissociation, cell spreading, and motility. The Rac1 and ARF6 GTPases have been shown to regulate one or more of these aforementioned processes. In fact, activated Rac1 has been shown to promote cell-cell adhesion as well as to enhance cell motility, leading to conflicting reports on the effect of Rac1 activation on epithelial cell motility. In this study, we have examined the activation profiles of endogenous Rac1 and ARF6 during the sequential stages of epithelial cell scattering. Using Madin-Darby canine kidney cells treated with hepatocyte growth factor/scatter factor or cell lines stably expressing activated v-Src, we show that Rac1 and ARF6 exhibit distinct activation profiles during cell scattering. We have found that an initial ARF6-dependent decrease in the levels of Rac1-GTP is necessary to induce cell-cell dissociation. This is followed by a steady increase in Rac1 and ARF6 activation and cell migration. In sum, this study documents the progression of ARF6 and Rac1 activities during epithelial cell scattering.  相似文献   

16.
The cytokinesis phase, or C phase, of the cell cycle results in the separation of one cell into two daughter cells after the completion of mitosis. Although it is known that microtubules are required for proper positioning of the cytokinetic furrow [1] [2], the role of pre-anaphase microtubules in cytokinesis has not been clearly defined for three key reasons. First, inducing microtubule depolymerization or stabilization before the onset of anaphase blocks entry into anaphase and cytokinesis via the spindle checkpoint [3]. Second, microtubule organization changes rapidly at anaphase onset as the mitotic kinase, Cdc2-cyclin B, is inactivated [4]. Third, the time between the onset of anaphase and the initiation of cytokinesis is very short, making it difficult to unambiguously alter microtubule polymer levels before cytokinesis, but after inactivation of the spindle checkpoint. Here, we have taken advantage of the discovery that microinjection of antibodies to the spindle checkpoint protein Mad2 (mitotic arrest deficient) in prometaphase abrogates the spindle checkpoint, producing premature chromosome separation, segregation, and normal cytokinesis [5] [6]. To test the role of pre-anaphase microtubules in cytokinesis, microtubules were disassembled in prophase and prometaphase cells, the cells were then injected with anti-Mad2 antibodies and recorded through C phase. The results show that exit from mitosis in the absence of microtubules triggered a 50 minute period of cortical contractility that was independent of microtubules. Furthermore, upon microtubule reassembly during this contractile C-phase period, approximately 30% of the cells underwent chromosome poleward movement, formed a midzone microtubule complex, and completed cytokinesis.  相似文献   

17.
Migration of epithelial cells is essential for tissue morphogenesis, wound healing, and metastasis of epithelial tumors. Here we show that ARNO, a guanine nucleotide exchange factor for ADP-ribosylation factor (ARF) GTPases, induces Madin-Darby canine kidney epithelial cells to develop broad lamellipodia, to separate from neighboring cells, and to exhibit a dramatic increase in migratory behavior. This transition requires ARNO catalytic activity, which we show leads to enhanced activation of endogenous ARF6, but not ARF1, using a novel pulldown assay. We further demonstrate that expression of ARNO leads to increased activation of endogenous Rac1, and that Rac activation is required for ARNO-induced cell motility. Finally, ARNO-induced activation of ARF6 also results in increased activation of phospholipase D (PLD), and inhibition of PLD activity also inhibits motility. However, inhibition of PLD does not prevent activation of Rac. Together, these data suggest that ARF6 activation stimulates two distinct signaling pathways, one leading to Rac activation, the other to changes in membrane phospholipid composition, and that both pathways are required for cell motility.  相似文献   

18.
The septation initiation network (SIN) serves to coordinate cytokinesis with mitotic exit in the fission yeast Schizosaccharomyces pombe. SIN components Spg1 and Cdc7 together play a central role in regulating the onset of septation and cytokinesis. Spg1, a Ras-like GTPase, localizes to the spindle pole bodies (SPBs) throughout the cell cycle. It is converted to its GTP-bound (active) state during mitosis, only to become inactivated at one SPB during anaphase and at both SPBs as cells exit mitosis. Cdc7 functions as an effector kinase for Spg1, binding to Spg1 in its GTP-bound state, and therefore is present at both SPBs during mitosis and asymmetrically at only one during anaphase. Interestingly, the kinase activity of Cdc7 does not vary across the cell cycle, suggesting the possibility that Cdc7 kinase activity is independent of Spg1 binding. Consistent with this, we found that Cdc7 associates with Spg1 only during mitosis. To learn more about the essential role of Cdc7 kinase in the SIN and its regulation, we undertook a structure/function analysis and identified independent functional domains within Cdc7. We found that a region adjacent to the kinase domain is responsible for Spg1 association and identified an overlapping but distinct SPB localization domain. In addition Cdc7 associates with itself and exists as a dimer in vivo.  相似文献   

19.
Cytokinesis bridge instability leads to binucleated cells that can promote tumorigenesis in vivo. Membrane trafficking is crucial for animal cell cytokinesis, and several endocytic pathways regulated by distinct GTPases (Rab11, Rab21, Rab35, ARF6, RalA/B) contribute to the postfurrowing steps of cytokinesis. However, little is known about how these pathways are coordinated for successful cytokinesis. The Rab35 GTPase controls a fast endocytic recycling pathway and must be activated for SEPTIN cytoskeleton localization at the intercellular bridge, and thus for completion of cytokinesis. Here, we report that the ARF6 GTPase negatively regulates Rab35 activation and hence the Rab35 pathway. Human cells expressing a constitutively activated, GTP-bound ARF6 mutant display identical endocytic recycling and cytokinesis defects as those observed upon overexpression of the inactivated, GDP-bound Rab35 mutant. As a molecular mechanism, we identified the Rab35 GAP EPI64B as an effector of ARF6 in negatively regulating Rab35 activation. Unexpectedly, this regulation takes place at clathrin-coated pits, and activated ARF6 reduces Rab35 loading into the endocytic pathway. Thus, an effector of an ARF protein is a GAP for a downstream Rab protein, and we propose that this hierarchical ARF/Rab GTPase cascade controls the proper activation of a common endocytic pathway essential for cytokinesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号