首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure of SET domain proteins: a new twist on histone methylation   总被引:9,自引:0,他引:9  
The methylation of lysine residues on histone tails is catalyzed by proteins containing a conserved SET domain. A recent flurry of structures of SET domain proteins has revealed a new protein fold and a scaffold for understanding catalysis and substrate binding by these enzymes. The prospect that histone methylation might form an epigenetic code and the implicated involvement of SET domain proteins in cancer assures that structure-function studies of these enzymes will continue until their detailed mechanism of action is determined.  相似文献   

2.
SET domains and histone methylation   总被引:10,自引:0,他引:10  
The realisation that SET domains, which are found in numerous proteins involved in chromatin regulation, catalyse the methylation of lysine residues has led to intense interest in their cellular, biochemical and structural properties. The structures of five SET domain proteins have been reported over the past year. SET domains possess a novel fold, and use adjacent domains for both structural stabilisation and the completion of their active sites. The cofactor S-adenosyl-L-methionine and peptide substrates bind on opposite faces of the SET domain. Remarkably, the sidechain of the target lysine approaches the transferred methyl group through a narrow channel that passes through the middle of the domain.  相似文献   

3.
Plant Ash1 SET proteins are involved in H3K36 methylation, and play a key role in plant reproductive development. Genes encoding Ash1 SET proteins constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. To investigate the evolutionary history and functional differentiation of the Ash1 SET gene family, we made a comprehensive evolutionary analysis of this gene family from eleven major representatives of green plants. A novel deep sister relationship grouping previously resolved II-1 and II-2 orthologous groups was identified. The absence of AWS domain in the group II-2 suggests that the independent losses of AWS domain have occurred during evolution. A diversity of gene structures in plant Ash1 SET gene family have been presented since the divergence of Physcomitrella patens (moss) from the other land plants. A small proportion of codons in SET domain regions were detected to be under positive selection along the branches ancestral to land plant and angiosperms, which may have allowed changes of substrate specificity among different evolutionary groups while maintaining the primary function of SET domains. Our predictive subcellular localization and comparative anatomical meta-expression analyses can assort with the structural divergences of Ash1 SET proteins.  相似文献   

4.
The crystal structure of Streptomyces erythraeus trypsin (abbreviated as SET) has been determined in order to clarify the precise structure of the vicinity of the active site of serine protease and to understand its structure-function relationship. Crystals of SET were prepared at its active pH range (pH 5-10) without any inhibitors which might have affected the circumstances around the active sites. The structure model of SET was made based on the electron density map obtained by the multiple isomorphous replacement method at 3.5 A resolution, and refined by the restrained least-squares method. The current model yields a crystallographic R-factor of 0.272 for 4,968 reflections between 8 and 2.7 A resolution. Though the sequence homology among SET, Streptomyces griseus trypsin and bovine trypsin, 32-37%, is not so high, their overall structures are similar to each other. Comparison of the three molecular structures shows that: 1) the folding of the main chains of the three proteins is essentially the same though there are significant differences on the molecular surface; 2) the spatial arrangements of the catalytic triads in the three proteins are similar to each other; 3) in SET and S. griseus trypsin a short stretch of 3(10)-helix is found through Ala56 to Thr59; His57 in this segment is one important amino acid residue involved in the active sites.  相似文献   

5.
植物SET蛋白   总被引:2,自引:0,他引:2  
SET蛋白是一类包含保守的SET结构域、与组蛋白甲基化密切相关的蛋白质。组蛋白修饰作为调控基因表达的重要因素,在植物体基因转录调控中发挥关键的作用。有关SET蛋白的研究为深入了解组蛋白修饰的机制提供了重要信息。植物SET蛋白具有保守的结构特征及进化机制,参与众多细胞核内的反应过程,如染色体的浓缩和分离,基因的转录,以及DNA的复制和修复等,调控植物基因的表达,影响植物体的发育。  相似文献   

6.
SET domains are protein lysine methyltransferases that methylate diverse proteins, such as, histones, Rubisco and cytochrome C. In particular, they play an important role in the dynamics of the eukaryotic chromatin and are present in several chromatin-associated proteins. Recently, structures of several SET domains have been solved, and they contain a conserved fold that is unrelated to previously characterized methyltransferases, which possess either Rossmann fold or SPOUT domains. Phylogenetic and phyletic-profile analysis of the SET domain suggests that it was an evolutionary “invention” of the eukaryotic lineage, with secondary lateral transfers to bacteria. We show that the conserved N- and C- terminal regions, which comprise the core barrel-like module of the SET domain, are symmetric repeats of a simple 3-stranded unit. Furthermore, the two symmetrically arranged repeats contribute to the binding sites for the two substrates of the SET domain. This suggests the SET domain arose from an ancestral dimer of this 3-stranded unit, with each unit probably functioning as generic-ligand binding structure. The divergence between the two repeat units appears to have arisen as a result of their interactions with the central module of the SET domain, which was inserted between the two repeats. One of the repeats appears to have acquired adaptations, which helped it to specialize in AdoMet binding, whereas the second repeat contributed to histone-interaction, and in orienting a crucial active site residue. The central module of the SET domain supplies a critical asparagine to the active site, and its structural features suggest that it may have also arisen from a further duplication of one of the repeats comprising the core barrel. However, it appears to have structurally diverged from the two canonical repeats due to the lack of an obligate dimerization partner. The spatial position of the two repeats in the ancestral dimer appears to have favored the formation of the structural knot typical of the SET domain. A comparable knot is seen in the SPOUT-domain methyltransferases, and this represents a case of convergent evolution of an active-site-associated configuration in two otherwise unrelated classes of methylases. Thus, the SET domain provides a model for the innovation of a complex enzymatic fold through the duplications of a structurally simple non-enzymatic unit.  相似文献   

7.
SET domains are protein lysine methyltransferases that methylate diverse proteins, such as, histones, Rubisco and cytochrome C. In particular, they play an important role in the dynamics of the eukaryotic chromatin and are present in several chromatin-associated proteins. Recently, structures of several SET domains have been solved, and they contain a conserved fold that is unrelated to previously characterized methyltransferases, which possess either Rossmann fold or SPOUT domains. Phylogenetic and phyletic-profile analysis of the SET domain suggests that it was an evolutionary "invention" of the eukaryotic lineage, with secondary lateral transfers to bacteria. We show that the conserved N- and C- terminal regions, which comprise the core barrel-like module of the SET domain, are symmetric repeats of a simple 3-stranded unit. Furthermore, the two symmetrically arranged repeats contribute to the binding sites for the two substrates of the SET domain. This suggests the SET domain arose from an ancestral dimer of this 3-stranded unit, with each unit probably functioning as generic-ligand binding structure. The divergence between the two repeat units appears to have arisen as a result of their interactions with the central module of the SET domain, which was inserted between the two repeats. One of the repeats appears to have acquired adaptations, which helped it to specialize in AdoMet binding, whereas the second repeat contributed to histone-interaction, and in orienting a crucial active site residue. The central module of the SET domain supplies a critical asparagine to the active site, and its structural features suggest that it may have also arisen from a further duplication of one of the repeats comprising the core barrel. However, it appears to have structurally diverged from the two canonical repeats due to the lack of an obligate dimerization partner. The spatial position of the two repeats in the ancestral dimer appears to have favored the formation of the structural knot typical of the SET domain. A comparable knot is seen in the SPOUT-domain methyltransferases, and this represents a case of convergent evolution of an active-site-associated configuration in two otherwise unrelated classes of methylases. Thus, the SET domain provides a model for the innovation of a complex enzymatic fold through the duplications of a structurally simple non-enzymatic unit.  相似文献   

8.
Histone proteins play a central role in chromatin packaging, and modification of histones is associated with chromatin accessibility. SET domain [Su(var)3-9, Enhancer-of-zeste, Trithorax] proteins are one class of proteins that have been implicated in regulating gene expression through histone methylation. The relationships of 22 SET domain proteins from maize (Zea mays) and 32 SET domain proteins from Arabidopsis were evaluated by phylogenetic analysis and domain organization. Our analysis reveals five classes of SET domain proteins in plants that can be further divided into 19 orthology groups. In some cases, such as the Enhancer of zeste-like and trithorax-like proteins, plants and animals contain homologous proteins with a similar organization of domains outside of the SET domain. However, a majority of plant SET domain proteins do not have an animal homolog with similar domain organization, suggesting that plants have unique mechanisms to establish and maintain chromatin states. Although the domains present in plant and animal SET domain proteins often differ, the domains found in the plant proteins have been generally implicated in protein-protein interactions, indicating that most SET domain proteins operate in complexes. Combined analysis of the maize and Arabidopsis SET domain proteins reveals that duplication of SET domain proteins in plants is extensive and has occurred via multiple mechanisms that preceded the divergence of monocots and dicots.  相似文献   

9.
Proteomic analysis of SET-binding proteins   总被引:1,自引:0,他引:1  
The protein SET is involved in essential cell processes such as chromatin remodeling, apoptosis and cell cycle progression. It also plays a critical role in cell transformation and tumorogenesis. With the aim to study new SET functions we have developed a system to identify SET-binding proteins by combining affinity chromatography, MS, and functional studies. We prepared SET affinity chromatography columns by coupling the protein to activated Sepharose 4B. The proteins from mouse liver lysates that bind to the SET affinity columns were resolved with 2-DE and identified by MS using a MALDI-TOF. This experimental approach allowed the recognition of a number of SET-binding proteins which have been classified in functional clusters. The identification of four of these proteins (CK2, eIF2alpha, glycogen phosphorylase (GP), and TCP1-beta) was confirmed by Western blotting and their in vivo interactions with SET were demonstrated by immunoprecipitation. Functional experiments revealed that SET is a substrate of CK2 in vitro and that SET interacts with the active form of GP but not with its inactive form. These data confirm this proteomic approach as a useful tool for identifying new protein-protein interactions.  相似文献   

10.
Methylation of proteins is emerging to be an important regulator of protein function. SET7/9, a protein lysine methyltransferase, catalyses methylation of several proteins involved in diverse biological processes. SET7/9-mediated methylation often regulates the stability, sub-cellular localization and protein-protein interactions of its substrate proteins. Here, we aimed to identify novel biological processes regulated by SET7/9 by identifying new interaction partners. For this we used yeast two-hybrid screening and identified the large subunit ribosomal protein, eL42 as a potential interactor of SET7/9. We confirmed the SET7/9-eL42 interaction by co-immunoprecipitation and GST pulldown studies. The N-terminal MORN domain of SET7/9 is essential for its interaction with eL42. Importantly, we identified that SET7/9 methylates eL42 at three different lysines - Lys53, Lys80 and Lys100 through site-directed mutagenesis. By puromycin incorporation assay, we find that SET7/9-mediated methylation of eL42 affects global translation. This study identifies a new role of the functionally versatile SET7/9 lysine methyltransferase in the regulation of global protein synthesis.  相似文献   

11.
12.
Adenovirus protein VII is the major component of the viral nucleoprotein core. It is a highly basic nonspecific DNA-binding protein that condenses viral DNA inside the capsid. We have investigated the fate and function of protein VII during infection. "Input" protein VII persisted in the nucleus throughout early phase and the beginning of DNA replication. Chromatin immunoprecipitation revealed that input protein VII remained associated with viral DNA during this period. Two cellular proteins, SET and pp32, also associated with viral DNA during early phase. They are components of two multiprotein complexes, the SET and INHAT complexes, implicated in chromatin-related activities. Protein VII associated with SET and pp32 in vitro and distinct domains of protein VII were responsible for binding to the two proteins. Interestingly, protein VII was found in novel nuclear dot structures as visualized by immunofluorescence. The dots likely represent individual infectious genomes in association with protein VII. They appeared within 30 min after infection and localized in the nucleus with a peak of intensity between 4 and 10 h postinfection. After this, their intensity decreased and they disappeared between 16 and 24 h postinfection. Interestingly, disappearance of the dots required ongoing RNA synthesis but not DNA synthesis. Taken together these data indicate that protein VII has an ongoing role during early phase and the beginning of DNA replication.  相似文献   

13.
SET domain lysine methyltransferases (KMTs) are S-adenosylmethionine (AdoMet)-dependent enzymes that catalyze the site-specific methylation of lysyl residues in histone and non-histone proteins. Based on crystallographic and cofactor binding studies, carbon-oxygen (CH · · · O) hydrogen bonds have been proposed to coordinate the methyl groups of AdoMet and methyllysine within the SET domain active site. However, the presence of these hydrogen bonds has only been inferred due to the uncertainty of hydrogen atom positions in x-ray crystal structures. To experimentally resolve the positions of the methyl hydrogen atoms, we used NMR (1)H chemical shift coupled with quantum mechanics calculations to examine the interactions of the AdoMet methyl group in the active site of the human KMT SET7/9. Our results indicated that at least two of the three hydrogens in the AdoMet methyl group engage in CH · · · O hydrogen bonding. These findings represent direct, quantitative evidence of CH · · · O hydrogen bond formation in the SET domain active site and suggest a role for these interactions in catalysis. Furthermore, thermodynamic analysis of AdoMet binding indicated that these interactions are important for cofactor binding across SET domain enzymes.  相似文献   

14.
15.
Histone methylation, which is mediated by the histone lysine (K) methyltransferases (HKMTases), is a mechanism associated with many pathways in eukaryotes. Most HKMTases have a conserved SET (Su(var) 3‐9,E(z),Trithorax) domain, while the HKMTases with SET domains are called the SET domain group (SDG) proteins. In plants, only SDG proteins can work as HKMTases. In this review, we introduced the classification of SDG family proteins in plants and the structural characteristics of each subfamily, surmise the functions of SDG family members in plant growth and development processes, including pollen and female gametophyte development, flowering, plant morphology and the responses to stresses. This review will help researchers better understand the SDG proteins and histone methylation in plants and lay a basic foundation for further studies on SDG proteins.  相似文献   

16.
17.
18.
The neuronal Cdk5 kinase is composed of the catalytic subunit Cdk5 and the activator protein p35(nck5a) or its isoform, p39(nck5ai). To identify novel p35(nck5a)- and p39(nck5ai)-binding proteins, fragments of p35(nck5a) and p39(nck5ai) were utilized in affinity isolation of binding proteins from rat brain homogenates, and the isolated proteins were identified using mass spectrometry. With this approach, the nuclear protein SET was shown to interact with the N-terminal regions of p35(nck5a) and p39(nck5ai). Our detailed characterization showed that the SET protein formed a complex with Cdk5/p35(nck5a) through its binding to p35(nck5a). The p35(nck5a)-interacting region was mapped to a predicted alpha-helix in SET. When cotransfected into COS-7 cells, SET and p35(nck5a) displayed overlapping intracellular distribution in the nucleus. The nuclear co-localization was corroborated by immunostaining data of endogenous SET and Cdk5/p35(nck5a) from cultured cortical neurons. Finally, we demonstrated that the activity of Cdk5/p35(nck5a), but not that of Cdk5/p25(nck5a), was enhanced upon binding to the SET protein. The tail region of SET, which is rich in acidic residues, is required for the stimulatory effect on Cdk5/p35(nck5a).  相似文献   

19.
Bottomley MJ 《EMBO reports》2004,5(5):464-469
DNA is packed together with histone proteins in cell nuclei to form a compact structure called chromatin. Chromatin represents a scaffold for many genetic events and shows varying degrees of condensation, including a relatively open form (euchromatin) and a highly condensed form (heterochromatin). Enzymes such as histone acetyltransferases (HATs) and methylases covalently label the amino-termini of histones, thereby creating a 'histone code' of modifications that is interpreted by the recruitment of other proteins through recognition domains. Ultimately, this network of interacting proteins is thought to control the degree of chromatin condensation so that DNA is available when it is required for genomic processes. Reviewed here are the structures of HAT and SET domains, which mediate the acetylation and methylation of histones, respectively, and bromodomains and chromodomains, which recognize the modified histones. How these structures have increased our understanding of DNA regulation is also discussed.  相似文献   

20.
SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号