首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen analysis was carried out on lacustrine sediment of a small hollow (15 m x 25 m) at the treeless sub-Alpine belt (202 m) of the inner Maurienne valley in the northern French Alps. A 2,500-year-long maple settlement was demonstrared. Three AMS dates of terrestrial plant macroremains support the chronology. First, Betula and Salix spread prior to 9,000 C14 BP. The first pollen grains of Acer, Abies and Pinus cembra are quoted at 8,600 C14 BP. High frequencies of Alnus glutinosa/incana (20%) and Acer (10%) show that mixed communities of Acer and Alnus persisted above the mountainous Abies forest between 7,490 and 5,850 C14 BP. After 5,850 C14 BP, the decrease in Acer stands could be attributed to fire as suggested by the strong increase in Betula and by the delayed expansion of Pinus cembra.  相似文献   

2.
The comparison of six pollen diagrams from French Alps allows us to reconstruct the past changes of vegetation structure at the upper limit of Subalpine range. Dense populations of Pinus cembra developed between 6500 and 2400 cal. BP, both in the southern Alps and the northern ones. Southern Alps seem however to be characterised by higher altitudinal limits, as shown by the past development of fir forests at 2080 m a.s.l. in the Ubaye valley. This study highlights the importance of taking in account local parameters in regional or continental reviews.  相似文献   

3.
A detailed pollen analysis has been conducted in a new sedimentary sequence taken at Les Etelles (700 m), in the hill vegetation belt in the Cha?ne des Hurtières (Northern French Alps). The Lateglacial history of the vegetation has been supported by 10 AMS datings. Variations in relative abundance of main pollen taxa were compared with variations in [symbol: see text] 18O in Swiss lacustrine sediments and with the GRIP ice-core record. Those highlight how the vegetation reacted to minor climatic oscillations. The Lateglacial spread of Quercus, Alnus and Corylus in the region is confirmed, thus allowing a new interpretation of some Lateglacial sedimentary sequences at an adjacent region (Bas-Dauphiné).  相似文献   

4.
Pollen analyses were undertaken on a small peat bog (Ecuelles 06° 49′ 41″E, 45° 58′ 49″N, 1855 m asl), located on the Anterne mountain (Upper-Arve Valley, French north-western Alps). The study highlights the role of green alder (Alnus alnobetula [Ehrh] K. Koch) in Holocene vegetation dynamics of the nowadays treeless subalpine belt. At this place, the onset of human perturbation caused a retreat of fir and arolla-pine stands and an expansion of green alder, which consequently dominated the landscape from 3700 up to 1965 cal. BP. After 1965 cal. BP, the clearings led to the present grasslands with few ligneous species (spruce, larch) on inaccessible cliffs or green alder on the edges of torrents or in avalanche corridors. Picea percentages have increased after 3900 cal. BP, but, due to human activities, spruce has never constituted large stands in the study area. The present general expansion of green alder is due to the decreasing human impact and it constitutes the first step of re-afforestation that should lead to mixed stands of spruce and arolla-pine. The study gives a new evidence of the past diversity of the vegetation cover and do not support the idea that green alder colonization at the subalpine belt constitutes a long-term risk for the vegetation diversity.  相似文献   

5.
Aim  Previous studies have failed to reconstruct the regional post-glacial migration pattern of Abies alba in southern France. Based on the first exhaustive compilation of palaeoecological data in this region, we present the state-of-the-art and attempt to synthesize the available information concerning glacial refugia and post-glacial migration, and analyse the information with regard to climate and orography.
Location  South-western Alps and adjacent areas, southern France.
Methods  The work compiles the available palaeoecological data in the south-western Alps (52 sites, 290 radiocarbon dates). The post-glacial migration pattern of Abies alba is reconstructed based on 22 selected palynological analyses (11 well-dated reference sites and 11 supplementary ones).
Results  The geographical patterns of approaching area limit, immigration and expansion are reconstructed at the scale of the southern French Alps.
Main conclusions  Despite previous assertions, the evidence of refugia in southern France is non-existent. The late-glacial records of fir pollen, previously interpreted in French Mediterranean regions and on adjacent foot-hills as possibly reflecting regional refugia, most probably correspond to reworking phenomena or long-distance pollen transport. Fir migration, originating in the Apennine refugia and through the south-western extremity of the Alps, was extremely rapid in the southern French Alps, only spanning a few centuries between 10,100 and 9800 cal. yr bp . The subsequent spread of fir populations was controlled by local parameters, such as the aridity of the inner valleys, which resulted in a delayed expansion in comparison to other regions. Abies almost disappeared from the south-western Alps during the Roman era, around 2000 cal. yr bp .  相似文献   

6.
Mountain vegetation is strongly affected by temperature and is expected to shift upwards with climate change. Dynamic vegetation models are often used to assess the impact of climate on vegetation and model output can be compared with paleobotanical data as a reality check. Recent paleoecological studies have revealed regional variation in the upward shift of timberlines in the Northern and Central European Alps in response to rapid warming at the Younger Dryas/Preboreal transition ca. 11 700 years ago, probably caused by a climatic gradient across the Alps. This contrasts with previous studies that successfully simulated the early Holocene afforestation in the (warmer) Central Alps with a chironomid‐inferred temperature reconstruction from the (colder) Northern Alps. We use LandClim , a dynamic landscape vegetation model to simulate mountain forests under different temperature, soil and precipitation scenarios around Iffigsee (2065 m a.s.l.) a lake in the Northwestern Swiss Alps, and compare the model output with the paleobotanical records. The model clearly overestimates the upward shift of timberline in a climate scenario that applies chironomid‐inferred July‐temperature anomalies to all months. However, forest establishment at 9800 cal. BP at Iffigsee is successfully simulated with lower moisture availability and monthly temperatures corrected for stronger seasonality during the early Holocene. The model‐data comparison reveals a contraction in the realized niche of Abies alba due to the prominent role of anthropogenic disturbance after ca. 5000 cal. BP, which has important implications for species distribution models (SDMs) that rely on equilibrium with climate and niche stability. Under future climate projections, LandClim indicates a rapid upward shift of mountain vegetation belts by ca. 500 m and treeline positions of ca. 2500 m a.s.l. by the end of this century. Resulting biodiversity losses in the alpine vegetation belt might be mitigated with low‐impact pastoralism to preserve species‐rich alpine meadows.  相似文献   

7.
A pollen study at Survilly (2235m asl, 06° 49′ 12″ E, 45° 59′ 24″ N), a small peatbog located on the Anterne mountain (Upper-Arve Valley, French north-western Alps) highlights the local role of human activities in Holocene vegetation dynamics of the currently treeless subalpine belt and the consecutive resumption of erosion. As early as 8890 cal. years BP (± 122), Pinus cembra grew close to the site. Grasslands without shrubs were established at around 4624 ± 86 cal. years BP. Due to human activities, spruces extended little after 3600 cal. BP. The intense grazing that resulted in the current alpine meadows goes back to 1436 cal. years BP (± 81). After 4624 cal. BP three clay layers show that from this period, the erosion became as active as during the first steps of the colonization of the vegetation prior to 10,050 cal. BP. During peat growth only a millimetre of clay at the end of the 9400–9050 cal. BP climatic event was recorded.  相似文献   

8.
Aim In this study, charcoal‐based data for Pinus cembra L. (arolla pine) were gathered from soil and travertine sequences in order to reconstruct its historical biogeography at the landscape level in the inner western Alps during the Holocene. Location The study sites are located between 1700 and 2990 m a.s.l., in the southern (Queyras Massif and Ubaye Valley) and the northern (Maurienne Valley) parts of the inner French Alps. Methods Charcoal fragments were extracted from sediments by water sieving, using meshes of 5, 2, 0.8 and 0.4 mm. The charcoal mass of P. cembra was determined in each charcoal assemblage. Accelerator mass spectrometry and conventional 14C measurements were used to date the fragments. Results Supported by 40 14C datings, the fragments show that, over 2000 m a.s.l., P. cembra accounts for around 40% (mean value) of identified fragments. Data reveal that arolla pine once extended between 260 and 375 m above the present‐day local tree lines. It was established in the southern and the northern French Alps from at least c. 9000 and 6000 cal yr bp , respectively. Main conclusions While present‐day populations of P. cembra are very fragmented in the inner French Alps, charcoal records indicate large past occurrences of this tree since the early Holocene. Human disturbance since the Neolithic seems to be the main reason for the regression of the arolla pine woodlands. On the south‐facing slopes of the study sites, currently deforested, this species extended up to 2800 m a.s.l. In the northern areas, charcoal records of the P. cembra expansion are consistent with the regional pollen archives, but in the southern massifs charcoal records indicate its presence c. 2600 years earlier than other palaeobotanical studies suggest. This discrepancy highlights the necessity to crosscheck data using several different proxies in order to assess the validity of conclusions regarding tree development in space and time.  相似文献   

9.
This contribution deals with some new aspects of the relationship between the vegetation history of Abies alba Mill. (silver fir) and genetic studies of this tree species in Switzerland. The results of the present study confirm the pollen analytical hypothesis that A. alba re-immigrated into Switzerland mainly from glacial refugia located in northern and central Italy. In particular, some distinct immigration routes of silver fir into the Ticino Alps, Valais, the Bernese Oberland (northwestern Alps), and Graubünden (eastern Alps) could be confirmed by genetic studies. Furthermore, the occurrence of other area-specific alleles indicates an additional influence from eastern European refugia on the Swiss gene pool. Moreover, genetic studies on Picea abies (L.) H. Karsten (Norway spruce) confirmed the general immigration routes from the eastern to the western Alps and from Savoie to the Jura Mountains. The combination of tree pollen and macrofossil analyses of Quaternary sediments with genetic studies of the same tree species represents a considerable research potential and is a new approach of floristic and genetic research. Received November 17, 2000 / Accepted April 27, 2001  相似文献   

10.
Abstract. Pollen, plant macrofossils and charcoal from a small forest hollow were analyzed to determine the formation and dynamics of a Pinus strobus-dominated forest stand on outwash soil in northern New York. P. strobus, Betula papyrifera and Abies balsamea colonized the upland surrounding the hollow following a major disturbance that occurred ca. 360 yr ago. Pre-disturbance vegetation consisted of shade-tolerant Tsuga canadensis, Fagus grandifolia and Picea ruhens. The size-class distribution of modern vegetation suggests continuing recruitment of A. balsamea and Acer rubrum at the site. The status of P. strobus and B. papyrifera in the stand is uncertain, but there is no evidence for recolonization of T. canadensis, F. grandifolia or P. rubens. Frequent windthrow has probably played a role in stand dynamics since ca. 310 yr BP due to the high wind-susceptibility of overstory and understory tree taxa in the modern forest patch. Vegetation change that occurred following fire(s) ca. 310 yr BP was recorded by plant macrofossils but not by pollen, indicating that the pollen assemblage was insensitive to vegetation change within at least 30 m (and potentially 60 m) of the hollow. The apparent insensitivity of this small-hollow pollen assemblage to local vegetation change may be related to the relatively large size of the hollow (75 m2) and/or to its close proximity to a 0.24 ha kettle pond.  相似文献   

11.
An examination of post-Younger Dryas (YD) pollen stratigraphies in the Gulf of St. Lawrence and St. Lawrence estuary region reveals features in the pollen records that represent breaks in the normal vegetation succession, widespread vegetation suppression, and a delay in migration of plant taxa between 9.7 and 7.2 14C ka (11.2 and 8.0 cal ka). The domination of Alnus crispa at sites bordering the St. Lawrence estuary-Gulf region in Gaspésie and northern New Brunswick within this timeframe represents a diversion from the typical vegetation progression from Picea and/or Populus or Picea/Betula to Pinus and/or Betula, and signifies a shift to a cooler, drier climate. Coinciding with the A. crispa expansion and domination in that region was the contraction of Picea populations in other areas. In southwestern New Brunswick and eastern and southeastern Nova Scotia, Picea was replaced by the first appearance of tree birch, B. papyrifera; whereas in western and southwestern Newfoundland, Picea gave way to a resurgence of shrub birch, Betula glandulosa. The Picea contraction and immediate resurgence of Betula represents cooling, and is reliably dated at 9720 ± 110 14C BP (10,800-11,240 cal BP) in southwest Newfoundland. This first post-YD episode of widespread cooling is correlated with the North Atlantic Preboreal Oscillation (PBO) centered around 9650 14C BP (10,900-11,180 cal BP) in the adjacent Great Lakes region. Sites exposed to winds from the Gulf of St. Lawrence in eastern New Brunswick, Prince Edward Island, and northern Nova Scotia show a lingering persistence of Picea and delay in arrival of Pinus to 8.0 and 7.7 14C ka (9.0 and 8.4 cal ka), yet Pinus was dominant as early as 9.4 14C ka (10.6 cal ka) in southwestern New Brunswick. At the same time, tundra vegetation persisted at high elevations in western and southwestern Newfoundland only to be replaced by upslope migration of shrub-birch heath by 8 14C ka. Prolonged broad-scale cooling to 8 14C ka and to as late as 7.7 14C ka extended up to 200 km inland in areas exposed to the St. Lawrence estuary and Gulf region and was in response to strong, cold, dry anticyclonic winds coming off the retreating Laurentide Ice Sheet in combination with enhanced freshwater runoff through the Gulf of St. Lawrence.The end of the period of prolonged cooling and onset of regional warming coincided with the diversion of western Canada runoff and Agassiz-Ojibway drainage to Hudson Bay and reduced effect or final break-up of the Laurentide Ice Sheet. Several sites document a subsequent cold shift, that interrupted regional warming at 7650 to 7200 14C BP (8400 to 8000 cal BP), and which is variously represented by the suppression of Pinus and resurgence of Picea, sometimes with A. crispa (Québec-Maritime region), or by an abrupt decrease of Picea and resurgence of Betula (western Newfoundland). This second post-YD cool interval is equated with the 8200 cal BP cold event registered in the Greenland ice isotopic record.  相似文献   

12.
Freléchoux F., Meisser M. and Gillet F. 2007. Secondary succession and loss in plant diversity following a grazing decrease in a wooded pasture of the central Swiss Alps. Bot. Helv. 117: 37 – 56. Reduced cattle grazing pressure in the Alps has caused the reforestation of many subalpine pastures during the last decades. To understand the dynamics of natural reforestation and to evaluate how this change affects plant species diversity, we described the vegetation of a wooded pasture in the central Swiss Alps (Sembrancher, Valais) using the integrated synusial method. Based on stratified vegetation relevés in 27 plots,we defined 11 community types at the synusial level (two tree-layer, five shrub-layer, and four herb-layer synusiae), and four community types at the phytocoenosis level (pasture, tall forbs and scrub, wooded pasture and forest). The spatial distribution of these four phytocoenoses suggests that they represent successional stages after abandonment, and that the pathway of vegetation succession depends on the aspect. We suppose that on northern oriented, cool and shady locations, abandoned pastures first develop towards tall-forb meadows and scrub with Alnus viridis, and then to a preforested stage with Picea abies and Larix decidua. In contrast, on western oriented, warm and sunny location, Larix decidua (mainly) and Picea abies directly colonize the abandoned pastures, but further succession finally leads to the same pre-forested stage as on northern slopes. Plant species richness was highest in open areas and decreased by 25% as tree cover increased from 6% to 65%. According to our successional model, plant species diversity is lost more rapidly on northern slopes (with species-poor green alder scrub) than on western slopes (with species-rich young larch forests), suggesting that northern slopes most urgently need an appropriate grazing management. Manuscrit accepté le 28 mars 2007  相似文献   

13.
Vittoz P., Selldorf P., Eggenberg S. and Maire S. 2005. Festuca paniculata meadows in Ticino (Switzerland) and their Alpine environment. Bot. Helv. 115: 33–48.Festuca paniculata (L.) Schinz & Thellung locally dominates montane and subalpine meadows of the Alps and other mountains of southern Europe. Vegetation relevés were carried out in Switzerland and northern Italy to study the site conditions under which Festuca paniculata meadows occur in this part of the Alps, their species composition and phytosociological status, and their relationship to Festuca paniculata meadows described previously from the French Alps (Centaureo-Festucetum spadiceae) and Austrian Alps (Hypochaerido uniflorae-Festucetum paniculatae). The Swiss meadows were found to have a similar ecology to those in France and Austria. They occur mostly between 1600 and 2100 m a.s.l on steep slopes with southern aspect, generally on crystalline rocks, but sometimes on calcareous rocks if soils have been decalcified. The species composition of the Swiss meadows is closer to the Austrian than to the French communities, and we attribute them to the association Hypochaerido uniflorae-Festucetum paniculatae with the new subassociation polygaletosum chamaebuxi. Climate is probably the main factor separating vegetation units in the Alps: the Centaureo-Festucetum spadiceae occurs where summers are dry, whereas the Hypochaerido uniflorae-Festucetum paniculatae occurs where rainfall is not a limiting factor in summer.Manuscrit accepté le 10 février 2005  相似文献   

14.
A pollen record from Timbio, located at an elevation of 1750m on the high plain of Popayán (2 degrees 24'N, 76 degrees 36'W) is presented. This forms the basis for reconstructing the vegetation and climate history for the periods from 27000 to 9200 radiocarbon years before the present (14Cyr BP) and 2100 14Cyr BP to sub-recent. The 5m sediment core has time control based on seven AMS radiocarbon dates. Four pollen assemblage zones (TIM-1 to TIM-4) are recognized. During the period of 27200 to 26000 14Cyr BP, an Andean forest was near the site. The vegetation consisted of forest and open herb-rich vegetation, climatic conditions were moist and temperatures some 6 degrees C lower than compared to those of today. During the period of 26000 to 16000 14Cyr BP forest was less open. The observed succession from a Podocarpus-Weinmannia dominated forest to a Hedyosmum dominated forest, and finally to a forest with Ilex, Myrica and ferns indicates a progressive decrease of temperature during this period, with a maximum temperature depression of ca. 5-7.5 degrees C compared to present-day conditions. During the period of 16000 to 9200 14Cyr BP, temperature decrease is estimated at ca. 7.5 degrees C and the climate was the driest. During the period of 2100 to 600 14C2600m altitude (ca. 8 degrees C) and those at sea-level (2.5-6 degrees C) and supports the observation that glacial lapse rates were higher than in modern times.  相似文献   

15.
Palaeobotanical analysis and radiocarbon dating of lake sediments from Bachalpsee (2265 m a.s.l.), a small lake above the present-day timber-line in the northern Swiss Alps reveals that the region was already deglaciated during the Younger Dryas. The sediment record is dominated by long-distance transported pollen that originates from lowland vegetation but the plant macrofossils give evidence of the local vegetation development. Comparison with palaeobotanical results from three sites along an altitudinal transect permits the reconstruction of the regional timber-line history. Throughout the entire Holocene the catchment of Bachalpsee consisted of a mosaic of open meadows and dwarf shrubs (Salix, Vaccinium, Rhododendron). Chironomid and cladoceran assemblages suggest that the early to mid-Holocene was the warmest interval at Bachalpsee. Comparison of the palaeobotanical results with those from the mire “Feld” (2130 m a.s.l.) in the vicinity of Bachalpsee showed that during the mid-Holocene the timber-line was formed by Pinus cembra and Picea abies with some scattered Abies alba trees and was situated close to Bachalpsee but never reached its catchment. The maximum timber-line in the Northern Alps was reached between 6000 and 3000 cal b.p. which is several millennia later than in the Central Alps. The species composition of the tree-line (Abies alba, Pinus cembra and the absence of Larix decidua) points to less continental and moister climatic conditions compared with the central Alps during the early to mid-Holocene. From 3000 cal b.p. onwards the timber-line was lowered by human deforestation with the most intense pulses of human impact occurring since the Middle Ages. The catchment of Bachalpsee has been used as alpine pasture since the Bronze Age.  相似文献   

16.
Two Holocene lake sequences from Lac de Creno, Corsica were analysed on the basis of 119 pollen spectra and with the support of 13 14C-calibrated dates. The lower part of one of these sequences, corresponding to the late- glacial period, has been published previously. The first third of the Post-glacial is characterized by very particular forest dynamics, namely the absence of a role for deciduous Quercus and Corylus , the presence of mesophilous vegetation types dominated by Taxus , and the major forest role of Erica arborea at lower and mean altitude. At about 7440 cal BP, the occurrence of a major anthropogenic action brought about significant changes in the vegetation, notably an increase of deciduous Quercus and the expansion of Quercus ilex . Later, three major human-induced events are identified: the first, at about 2290 cal BP, is the cause of a short local expansion of Abies ; the second, at about 1150 cal BP, is the degradation of deciduous forests to the benefit of Fagus ; the third, at about 310 cal BP, corresponds to the disappearance of Fagus and its replacement by Pinus . Pollen data indicate that Q. ilex , Abies and Fagus are not indigenous in Corsica but spread there during the Postglacial ; this probably took place at about 6980 cal BP for Q. ilex .  相似文献   

17.
Frederic Archaux 《Ibis》2004,146(1):138-144
Altitudinal shifts in distribution were investigated in forest breeding birds, along two elevational gradients in the French northern and southern Alps, from counts repeated at exactly the same locations in the 1970s and the 2000s. Significant shifts were reported for eight of 24 species in the northern alpine site (five downwards, three upwards) and for two of the 17 species in the southern site (one downwards, one upwards). Apart from the Crested Tit Parus cristatus , which shifted significantly downwards at both sites, altitudinal shifts were not significantly correlated between sites. Bird communities did not shift their distribution upwards despite a 2.3 °C increase in spring temperatures in the two study areas. These results suggest that bird distributions by altitude have not yet been affected by climatic warming, and that most specific elevational shifts are probably related to site-specific factors.  相似文献   

18.
  • 1 The European roe deer Capreolus capreolus is a typical faunal element of the Holocene. It was already present in Europe at least 600 000 years ago and it has been known from both glacial and interglacial phases since then. With nearly 3000 fossil and subfossil records, it is one of the most frequent mammals in the Late Quaternary.
  • 2 During the Middle and Late Weichselian Pleniglacial, the distribution of the roe deer was not restricted to the Mediterranean peninsulas but repeatedly reached regions of central Europe. In contrast to that, roe deer records from the Last Glacial Maximum (LGM, 21.0–14.5 ka 14C BP) are largely confined to the Mediterranean peninsulas – with the exception of south‐western France and the surroundings of the Carpathians where several records attest to its occurrence during the LGM.
  • 3 During the Greenland Interstadial 1 (12.5–10.8 ka 14C BP), the species' distribution extended further north and the roe deer appeared north of the Alps and reached regions of central Germany. This seems to be correlated with the abrupt change to more favourable environmental conditions during this period. It is very likely that the roe deer disappeared north of the Alps during the Younger Dryas cooling (10.8–10.0 ka14C BP). The northern regions of the central European lowlands were recolonized by roe deer during the late Preboreal 9.7–9.5 ka 14C BP for the first time since the Weichselian Glacial.
  • 4 The combined pattern of genetic data and fossil records of European roe deer suggests several regions in the Iberian peninsula, southern France, Italy and the Balkans as well as in the Carpathians and/or eastern Europe as glacial refugia. It further suggests that C. capreolus might have recolonized most parts of central‐northern Europe out of one or more eastern European (not Balkan) and/or Carpathian refugia. This recolonization wave might have blocked immigration from the traditional Mediterranean areas.
  相似文献   

19.
Many buildings are being restored in the city of Aix-en-Provence, southeastern France and allowed systematic dendrochronological analyses. 144 fir timbers (Abies alba Mill.) were examined and dated between 1303 and 1933. They highlight three felling phases (Medieval period, 17th-18th century, and 19th century). The best documented one corresponds to the 17th-18th centuries and coincides with significant building activity connected to the status of Aix, which is the parliamentary capital of Provence. Around Aix-en-Provence, it is difficult to find timbers with good dimensions. Our results show that timbers were transported from the Alps to Aix’s buildings. Potential testimonies of this timber trade have been found, such as raft assemblage marks, and carved signs and letters. A dendroprovenancing case study shows that between 1810 and 1890, some of Aix’s timbers could have come from the Northern French Alps or the Verdon-Durance region. Finally, the lack of timbers with good dimension and the difficulties of timber supply contributed to the development of reuse economy and technical innovation. These results are the foundation of a future well-established dendroprovenancing approach in the Southern Alps.  相似文献   

20.
Selincuo (31°34′–31°57′N, 88°31′–89°21′E)is one of the great lakes in northern Xizang surrounded by alpine grassland, composed mainly of Stipa purpurea, S, subssessifolia var. bassipulomosa. A 3.08 m long core has been taken from a water depth of 27 m, 3 km to the north from the lake. Palynological records of the core combined with surface sample results have revealed from the regional as well as local vegetational and environmental history since the last 12 000 a BP, a very low pollen concentration (19–209 grains/g), mainly of airborne pollen, which indicated a treeless alpine sparse vegetation. A great vegetation change took place at Ca. 9 600 a BP when alpine sparse vegetation was replaced by alpine grassland lasting until Ca. 6 000 a BP. Quite a number of tree pollen grains found in this time interval might be explained as a result of expansion of forests somewhere around the Xizang Plateau. These changes must have caused by climatic warming during the Early Holocene. During the last 6 000 years the vegetation had remained as the alpine grassland, although probably more luxurouste than before, but their was an obvious increase of arboreal pollen, such as the increase of Abies during Ca. 6 000–4 000 a BP, Picea 4 000–2 200 a BP, Pinus 2 200–1 000 a BP which indicated continuous expansion of forests growing around the plateaus. During the last 1 000 years both the concentration and proportion of the arboreal pollen decreased and those of Cypraceae pollen increased sharply. This might mean a reduction of the forests around the plateau and an expansion of swamps around the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号