首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. In the present study, we isolated a species of heliozoans from a brackish pond in Shukkeien Garden, Naka-ku, Hiroshima City, Japan. Electron-microscopic observations showed that the axonemal microtubules in this heliozoan constituted a complex pattern of hexagons and triangles. By applying SDS-polyacrylamide gel electrophoresis and subsequent immunoblotting, molecular weights of α and β-tubulins were determined to be 48 and 45 kDa, respectively. X-ray microanalysis demonstrated that the numerous scales coating the cell body surface were silicic structures. Size and shape of the cell body and the scales were examined and compared with other known species of heliozoans, which led us to conclude that this is a new species belonging to the genus Raphidiophrys . This heliozoan was also found to carry out rapid axopodial contraction during food uptake at a velocity of about 1 mm/s. With reference to this characteristic contractile behavior, this new species was named Raphidiophrys contractilis .  相似文献   

2.
Cavalier-Smith T  Chao EE 《Protist》2012,163(4):574-601
We describe a new tiny naked centrohelid heliozoan, Oxnerella micra, and sequenced its 18S and 28S rRNA genes. Its extremely slender axopodia have prominent extrusomes and are normally stretched across the substratum like those of many tiny granofilosean Cercozoa. Phylogenetic analysis of 18S rDNA shows that Oxnerella does not branch within any of the six known centrohelid families but very deeply in the order Pterocystida, between Choanocystidae and Pterocystidae; therefore we place it in a new family, Oxnerellidae. Oxnerella arose from ancestors with siliceous scales by losing them; as independently did Heterophryidae and Marophryidae, which replaced them by organic spicules, and Chlamydaster that is not truly naked but retains a mucilage coat and nests extremely shallowly within Pterocystidae. 28S rDNA has a group I intron. Concatenated Bayesian 18S/28S rRNA phylogeny shows centrohelids weakly as sisters to the naked non-centrohelid heliozoan Microheliella maris (Microhelida: Heliozoa). The centrohelid Marophrys marina possesses an elongation factor α-like (EFL) protein related to that of Polyplacocystis; Microheliella also has EFL. We also analysed Hsp90 and 18S rDNA sequences from 'Pinaciophora sp.' ATCC50355; they must be from a centrohelid, probably misidentified as Pinaciophora, the rDNA sequence branching deeply within Pterocystida. We reclassify two Polyplacocystis, Luffisphaera, Phaeodaria and Rotosphaerida.  相似文献   

3.
The majority of centrohelids bear external coverings consisting of organic spicules or siliceous scales. Cyst coverings are usually reinforced with additional layers of modified scales. The cyst wall of Raphidiophrys heterophryoidea has an unusual and complex structure. It consists of three different types of scales and includes the mosaic scale layer not known in other centrohelids. During excystment, the cyst wall fragments along the sutures of the mosaic layer. For other Raphidiophrys species, cyst coverings are not studied. The present paper describes a new Raphidiophrys species, R. elongata, belonging to the NC7 environmental clade. Trophozoites bore thin plate scales with reduced upper plate. Under starvation, cysts emerged in clonal cultures. Cyst coverings of R. elongata and R. heterophryoidea were studied in comparison with the use of FIB-SEM. Cyst wall of R. elongata was significantly thinner than in R. heterophryoidea and was formed with 3–5 layers of uniform overlapping scales. No mosaic scale layer was present. During excystment, trophozoite exited cyst shell through random fissure. Possible evolutionary events and driving forces behind the complication of cyst wall within Raphidiophrys were discussed.  相似文献   

4.
The morphology of a new marine heliozoan from the sandy littoral of King George Island (the South Shetland Islands, Antarctica) is described. The species is characterized by bent or curved spicules with a spur at the shaft bend point. Similarities and differences between the new species and other representatives of the genus Choanocystis are considered.  相似文献   

5.
The auxospore wall of Melosira nummuloides C. A. Agardh is composed of two distinct parts, an organic layer and a layer of siliceous scales. Similar scales are reported from other species of the genus and their mode of formation is described. The possible phylogenetic significance of the two wall layers is discussed with respect to the two main groups of diatoms.  相似文献   

6.
Abundant and well-preserved assemblages of disarticulated sponge spicules occur in Middle and Late Cambrian platform carbonates of western Hunan, China. Assemblages recovered from 11 stratigraphic horizons include calcisponges, demosponges, and hexactinellids. Hexactinellida, in particular, are both abundant and diverse in Upper Cambrian carbonates. Comparison with spicule assemblages from Australia indicates that many of these taxa have long stratigraphic ranges, limiting their use in correlation. The morphological diversity of these spicules exceeds that known for living siliceous sponges, supporting the observation that during the Cambrian radiation, sponges, like other metazoans, evolved a variety of architectural forms not observed in later periods. Like conodonts, individual sponges can produce more than one spicule form; thus, an "apparatus genus" concept based on multiple co-occurring elements may eventually prove useful in the biostratigraphic and paleobiological interpretation of disarticulated sponge spicules. Four distinctive forms are recognized as new taxa: Australispongia sinensis new genus and species, Flosculus gracilis new genus and species, Pinnatispongia bengtsoni new genus and species, and Nabaviella paibiensis new species.  相似文献   

7.
A new genus and species of centrohelid heliozoan Pinjata ruminata from the Tuzlukkol’ River (Orenburg Region of Russia) and Gor?koe Lake (Chelyabinsk Region of Russia) is studied with light‐ and electron microscopy. Pinjata ruminata has two types of plate scales, partially running up the sides of the axopodia. Inner plate scales (3.2–4.9 × 1.5–2.6 μm) are flat, ovate‐oblong and have a broad axial thickening and a thin electron‐dense border. Outer plate scales (4.2–6.7 × 1.5–3.0 μm) are concave, elongated, of irregular shape, often curved, and broadened towards one end. Roundish depressions are forming two rows on both sides of the narrow axial thickening. The cells are attached to the substratum. Molecular phylogenetic analysis based on the SSU rDNA robustly placed P. ruminata in the family Yogsothothidae. This position is confirmed with the presence of five panacanthocystid increase regions. The morphology of the new genus is in a good accordance with diagnosis of the family. The status of a genus “Heteroraphidiophrys” is discussed. Other potential findings of Pinjata from literature are analyzed. Pinjata represents the third lineage of centrohelids, characterized with the presence of only tangentially oriented plate scales. The halophilic nature of Yogsothothidae is suggested.  相似文献   

8.
Botting, J.P., Muir, L.A., Xiao, S., Li, X. & Lin, J.‐P. 2012: Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China. Lethaia, Vol. 45, pp. 463–475. The relationships of the extant sponge classes, and the nature of the last common ancestor of all sponges, are currently unclear. Early sponges preserved in the fossil record differ greatly from extant taxa, and therefore information from the fossil record is critical for testing hypotheses of sponge phylogenetic relationships that are based on modern taxa. New specimens of the enigmatic sponge Lenica sp., from the Early Cambrian Hetang Biota of South China, exhibit an unusual spicule structure. Each spicule consists of a siliceous core with an axial canal, an organic outer layer and a middle layer interpreted to have been originally calcium carbonate. This finding confirms previous work suggesting the existence of biminerallic spicules in early sponges. Combined with data from other early sponges, the new findings imply that the two fundamental spicule structures of modern sponges were derived from a compound, biminerallic precursor. Spicules are therefore homologous structures in Calcarea and Silicea, and if sponges are paraphyletic with respect to Eumetazoa, then spicules may also have been a primitive feature of Metazoa. □Calcarea, Early Cambrian, Hetang Biota, phylogeny, Silicea, taphonomy.  相似文献   

9.
Biomineralization processes are characterized by controlled deposition of inorganic polymers/minerals mediated by functional groups linked to organic templates. One metazoan taxon, the siliceous sponges, has utilized these principles and even gained the ability to form these polymers/minerals by an enzymatic mechanism using silicateins. Silicateins are the dominant protein species present in the axial canal of the skeletal elements of the siliceous sponges, the spicules, where they form the axial filament. Silicateins also represent a major part of the organic components of the silica lamellae, which are cylindrically arranged around the axial canal. With the demosponge Suberites domuncula as a model, quantitative enzymatic studies revealed that both the native and the recombinant enzyme display in vitro the same biosilica-forming activity as the enzyme involved in spicule formation in vivo. Monomeric silicatein molecules assemble into filaments via fractal intermediates, which are stabilized by the silicatein-interacting protein silintaphin-1. Besides the silicateins, a silica-degrading enzyme silicase acting as a catabolic enzyme has been identified. Growth of spicules proceeds in vivo in two directions: first, by axial growth, a process that is controlled by evagination of cell protrusions and mediated by the axial filament-associated silicateins; and second, by appositional growth, which is driven by the extraspicular silicateins, a process that provides the spicules with their final size and morphology. This radial layer-by-layer accretion is directed by organic cylinders that are formed around the growing spicule and consist of galectin and silicatein. The cellular interplay that controls the morphogenetic processes during spiculogenesis is outlined.  相似文献   

10.
11.
The marine sponge Neofibularia irata contains four different categories of siliceous spicules. These spicules are evident in the tissues as distinct bundles that act to increase the structural rigidity of the sponge. All spicules have a normal structural morphology with silica deposition around a hexagonal axial canal containing a crystalline axial filament. The megasclere strongyles are secreted in typical megasclerocytes. The sigma and raphid microscleres are secreted in individual microsclerocytes that are grouped together in parallel to form loose bundles. However, the microxea microscleres are apparently secreted in distinct tight bundles (trichodragmas) within a single cell. These cells, containing between 13 and 39 spicules, are grouped to form large packets of bundles of spicules.  相似文献   

12.
This paper reviews studies on the hexactinellid glass sponges (Hexactinellida: Porifera) that have organic silica spicules. According to its physical properties (microdensity, Young’s modulus, and light transmission), the material of the spicules is similar to amorphous silica; however, sponge spicules are birefringent, which suggests that they have a highly ordered crystal-like nature. Mineralized remnants of siliceous spicules composed of chemically inert materials are preserved in sedimentary rocks and provide evidence of the ecological state of the ancient biosphere. Sponges occur in waters with low temperatures; therefore, they grow very slowly and live for hundreds of years. The organic silica spicules exhibit the capacity for triboluminescence. The generated light emission may be used by symbiotic bacteria on the spicule surface.  相似文献   

13.
Wood, Rachel, Reitner, Joachim & West, Ronald R. 1989 01 15: Systematics and phylogenetic implications of the haploslerid stromatoporoid Newellia mira nov. gen. Lethaia, Vol. 22, pp. 85–93. Oslo. ISSN 0024–1164. The presence of spicules in a Palaeozoic stromatoporoid is here confirmed. Parallelopora mira Newell, 1935 from the Upper Carboniferous of the U.S.A. is redescribed as a calcified haplosclerid sponge with a primary siliceous spicule framework of isodictyally arranged styles, sub-tylostyles and strongyles and a secondary calcareous skeleton of stromatoporoid grade and probable aragonitic original mineralogy. P. mira is placed within a new genus Newellia, and family, the Newellidae. This form is postulated to have possessed large amounts of collagenous organic material which enveloped and bound the spicular framework in place. By the draping outline of the calcareous skeleton around the spicule framework and by analogy with the Recent demosponge genus Vaceletia, the calcareous skeleton is suggested to have formed by the direct mineralization of this collagenous template. Newellia mira nov. gen. is further proposed to constitute a member of a new clack of haplosclerid stromatoporoids, together with Euz-Miella erenoensis (Lower Cretaceous); a clade with some similarity to Recent non-calcified forms, e.g. Adocia. Most notably, the presence of different calcareous skeleton mineralogies and possibly microstructures in these two forms suggests the independent development of a calcareous skeleton at different times within this spicule clade. Demosponges appear to have produced calcareous skeletons independently in many different spicule clades. Calcified demosponges are now known from the Hadro-merida (Lower carboniferous; Upper Cretaceous - Recent), Axinellida (Upper Triassic - Lower Cretaceous; Upper Cretaceous; Recent), Poecilosclerida (Recent) as well as the Haplosclerida (Upper Carboniferous - Lower Cretaceous; Recent).□Upper Carboniferous, stromatoporoid, spicules, haplosclerid demosponges, calcareous skeleton biomineralization, demosponge clades, polyphyly.  相似文献   

14.
A new species, Mallomonas retrorsa , with a unique siliceous armour, is described from four slightly humic and acidic localities in Connecticut, U.S.A., each low in specific conductance. Cells of the new species have three types of siliceous scales each of which is asymmetric, domeless and arranged with their longitudinal axis parallel to the longitudinal axis of the cell. The scales are positioned such that the posterior rim of each scale faces the apical end of the cell. In addition, the new taxon has an apical whorl of very small, forward projecting paddle-shaped bristles that emerge from the rimmed ends of the apical scales, and an elongated caudal region.  相似文献   

15.
The order Thaumatomonadida includes biflagellated heterotrophic flagellates that form filopodia and typically possess siliceous surface scales. We found thaumatomonads to contribute on average about 5%-10% to flagellate abundance in different benthic habitats. A new species of thaumatomonads, Thaumatomonas coloniensis n. sp., is described on the basis of morphological and molecular biological features. This new species was isolated both from groundwater at Appeldorn near Rees (Germany) and from the Rhine River at Cologne (Germany). We have sequenced the small subunit rRNA (ssu rRNA) gene and a fragment of the large subunit rRNA (lsu rRNA) gene (D3-D5 region) from the isolates of the new species, including the first sequence of a representative of the thaumatomonad genus Gyromitus. In agreement with previous studies, the differences in ribosomal genes of different thaumatomonad species are very small. For understanding the phylogenetic relationships of Thaumatomonadida and to explore their sister group relationships, we have created three sequence data sets (ssu rRNA, partial lsu rRNA, concatenated alignment of both) with the same composition of isolates (from Thaumatomonadida, Euglyphida, Cercomonadidae, and Heteromitidae). According to a Kishino-Hasegawa test, Thaumatomonadida evolved within the Cercozoa as a sister taxon to the Heteromitidae. A possibly close relationship to the Euglyphida, recently grouped together with the Thaumatomonadida in the class Imbricatea/Silicofilosea based on the rRNA data sets was not supported by our analyses.  相似文献   

16.
The marine prasinophycean flagellate presently known as Nephroselmis gilva has been examined, using both the type culture and material from temperate (Denmark, New Zealand) and tropical waters (Thailand). All cell surfaces are covered with unmineralized scales, two types on the body, two on the flagella including flagellar hairs. The detailed structure of the scales is described, using high power electron microscopy of detached positive–stained scales. Previously overlooked organelles within the cell include large numbers of extrusive bodies, a rare type of organelle in chlorophyll–a– and –b–containing organisms, and an eyespot. N. gilva differs profoundly from the type species of Nephroselmis , and is transferred to the new genus Mamiella. Mamiella gilva is closely related to Mantoniella squamata. Together with the genus Dolichomastix they form the new family, Mamiellaceae, a small group of marine flagellates of worldwide distribution.
The members of the new family probably represent the most primitive extant prasinophytes. When compared with other members of the class, its species stand out, particularly by the lack of small square or diamond–shaped scales on the flagella and cell body. It is suggested that the Mamiellaceae should be referred to a separate order, Mamiellales.  相似文献   

17.
Korotnevella (Amoebozoa, Dactylopodida) is a genus of naked lobose amoebae with a dactylopodial morphotype. The cell membrane of these amoebae is covered with a monolayer of scales. The structure and size of scales are considered as species-specific features. Here, we describe a new marine species, Korotnevella mutabilis n. sp., isolated from the bottom sediment sample of Nivå Bay (Baltic Sea, The Sound) and studied with light and electron microscopy as well as with molecular phylogenetic analysis. This species has a number of morphological similarities with Korotnevella monacantholepis, such as size of the cell, L/B ratio, the nucleus structure and the type of a biotope from which both species were isolated. At the same time, Korotnevella mutabilis n. sp. differs from K. monacantholepis in the structure of basket-shaped scales: Korotnevella mutabilis n. sp. has an enclosed hammock-shaped latticework basket and up to two spines while K. monacantholepis has an opened two-row latticework basket and never has two spines. According to molecular phylogenetic analyses based on the sequences of the mitochondrial COI gene, Korotnevella mutabilis n. sp. is a distinct species, highly divergent from other Korotnevella species.  相似文献   

18.
We report a new naked cercozoan flagellate, Esquamula lacrimiformis n. g., n. sp., collected from a sandy beach in Japan. Its cells were 4.5–11.3 μm in length and 3.9–8.8 μm in width and possess two unequal flagella. Cells move in a smooth gliding motion and have a trailing long posterior flagellum. Phylogenetic analyses with small and large subunit ribosomal RNA genes revealed that E. lacrimiformis forms a novel lineage within the Thaumatomonadida, the members of which are flagellates with siliceous scales. However, our light and electron microscopic observations indicated that E. lacrimiformis cells do not possess any siliceous structures. Furthermore, other morphological characteristics, such as the shape of the extrusomes and the structural arrangement of the microbody, were clearly different from those of previously described thaumatomonads. On the basis of a combination of these morphological observations and our phylogenetic analyses, we conclude that E. lacrimiformis should be treated as a new species of a new genus and placed into a new family, Esquamulidae n. fam., under Thaumatomonadida.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号