共查询到20条相似文献,搜索用时 0 毫秒
1.
Kyoko Nakazaki Shingo Kitamura Yuki Motomura Akiko Hida Yuichi Kamei Naoki Miura Kazuo Mishima 《Journal of physiological anthropology》2014,33(1)
Background
This study aimed to develop an algorithm for determining sleep/wake states by using chronological data on the amount of physical activity (activity intensity) measured with the FS-750 actigraph, a device that can be worn at the waist, allows for its data to be downloaded at home, and is suitable for use in both sleep research and remote sleep medicine.Methods
Participants were 34 healthy young adults randomly assigned to two groups, A (n =17) and B (n =17), who underwent an 8-hour polysomnography (PSG) in the laboratory environment. Simultaneous activity data were obtained using the FS-750 attached at the front waist. Sleep/wake state and activity intensity were calculated every 2 minutes (1 epoch). To determine the central epoch of the sleep/wake states (x), a five-variable linear model was developed using the activity intensity of Group A for five epochs (x-2, x-1, x, x+1, x+2; 10 minutes). The optimal coefficients were calculated using discriminant analysis. The agreement rate of the developed algorithm was then retested with Group B, and its validity was examined.Results
The overall agreement rates for group A and group B calculated using the sleep/wake score algorithm developed were 84.7% and 85.4%, respectively. Mean sensitivity (agreement rate for sleep state) was 88.3% and 90.0% and mean specificity (agreement rate for wakeful state) was 66.0% and 64.9%, respectively. These results confirmed comparable agreement rates between the two groups. Furthermore, when applying an estimation rule developed for the sleep parameters measured by the FS-750, no differences were found in the average values between the calculated scores and PSG results, and we also observed a correlation between the two sets of results. Thus, the validity of these evaluation indices based on measurements from the FS-750 is confirmed.Conclusions
The developed algorithm could determine sleep/wake states from activity intensity data obtained with the FS-750 with sensitivity and specificity equivalent to that determined with conventional actigraphs. The FS-750, which is smaller, less expensive, and able to take measurements over longer periods than conventional devices, is a promising tool for advancing sleep studies at home and in remote sleep medicine. 相似文献2.
Yoo-Jin Seo Kazuya Matsumoto Se-Keun Moon Masatosi Hayasaka 《Biological Rhythm Research》2005,36(3):219-228
The purpose of this study was to investigate changes in the sleep/wake behavior during on-duty and off-duty periods in three age groups whilst performing shift work. The subjects (29 male shift workers in an electronics assembly plant) were examined using wrist actigraphy. They were monitored during a continuous full-day, three-team, three-shift system involving a forward rotation. The wrist actigraphic data were obtained for 21 days (1 shift cycle) for each subject. The number of episodes of dozing and total time spent dozing during the night shift significantly increased in the group aged more than 36 years, but the activity count significantly decreased. Time asleep at home during the night or evening shifts significantly decreased in those aged more than 36 years as compared to the younger groups, but the activity count in the daytime was significantly increased. From these results, we suggest that the adaptation of sleep behavior during a night shift becomes poorer with increasing age. 相似文献
3.
幼年期大鼠的睡眠/觉醒周期和成年期的有显著差异,最为显著的特点是快眼动(REM) 睡眠在24 小时内的百分比远多于其他任何年龄阶段,随着脑发育成熟而逐渐减少.与此同时,非快眼动(NREM) 睡眠和觉醒的百分比逐渐增加.后者与参与NREM睡眠和觉醒调节的神经元在发育早期的成熟程度较为一致.鉴于大鼠发育早期REM睡眠每日的百分比由最高开始逐渐降低,而触发和促进REM睡眠的胆碱能神经元各生化成分的活性则是由最低开始逐渐升高,此期的REM睡眠应该还有胆碱能以外的动力驱动.新近的资料表明,促肾上腺皮质激素释放因子(CRF)可能是幼年期REM睡眠的另一主要驱动力量. 相似文献
4.
Although there are several reports on ultradian and circadian rhythms in newborns, we found only one report in which infradian periodicities are described for heart-rate measurements in the early stages of human development. Here, we report infradian rhythms in the monthly range in the sleep/wake cycle of four infants studied along 24 consecutive weeks. Our procedure was applied to sleep diary records from four healthy newborns. The data were arranged in binary time series representing sleep (-1) or wake (1) states. These time series were integrated in order to obtain the cumulative sleep/wake time. A measure of the sleep/wake ratio (SWR) was obtained by computing the average slope of the cumulative sleep/wake time. To extract periodicities we applied the Fourier periodogram to the temporal course of the SWR. We found a notorious difference in the SWR pattern among infants. In two infants the SWR showed a marked linear decay, spending more time asleep than awake, while in the two other infants oscillated near zero. We found robust oscillations in all children. In all cases the Fourier periodogram results present significant power in the infradian range. From these results, we suggest that sleep and wake durations are probably modulated by some internal stimuli. 相似文献
5.
Daniela Wey Johanna Garefelt Frida M. Fischer Claudia R. Moreno Arne Lowden 《Chronobiology international》2016,33(10):1422-1432
Daytime workers tend to have shorter sleep duration and earlier sleep onset during work days than on days off. Large individual differences in sleep onset and sleep duration may be observed on work days, but work usually synchronizes sleep offset to a similar time. The present study describes individual differences in sleep behaviour of 48 daytime workers (25 men, aged 20–58 years) from an iron ore mine in Northern Sweden. The aim of the study was to determine whether differences in sleep patterns during work days were associated with the outcomes of sleepiness and sleep complaints. Cluster analysis was used to group workers into two categories of sleep onset and sleep duration. The “Late Sleep Onset” cluster comprised workers who slept 1.30 h later than the “Early Sleep Onset” cluster (p < 0.0001 for all weekdays). The “Long Sleep Duration” cluster slept 1.10 h longer than the “Short Sleep Duration” cluster (p < 0.0002 for work nights). The “Late Sleep Onset” cluster reported less refreshing sleep (p < 0.01) and had lower sufficient sleep scores (p < 0.01) than the “Early Sleep Onset” cluster. The “Short Sleep Duration” cluster also reported lower scores for sufficient sleep (p < 0.04) than the “Long Sleep Duration” cluster. For combined characteristics (phase and duration), workers with a late phase and short sleep duration reported greater sleep debt and sleepiness than workers with an early phase and short sleep duration (p < 0.02). Work schedule and commuting time modulate both sleep phase and sleep duration independently. Workers, classified as having an intermediate sleep phase preference, can organize their sleep time in order to minimize sleep debt and sleepiness symptoms. Individual differences in sleep phase and duration should be considered when promoting well-being at work even among groups with similar sleep needs. In order to minimize sleep debt and sleepiness symptoms, successful sleep behaviour could be promoted involving extend use of flexitime arrangement (i.e. later starting times) and reduce use of alarm clocks. 相似文献
6.
The Fourier spectral analysis of binary time series (or rectangular signals) causes methodological problems, due to the fact that it is based on sinusoidal functions. We propose a new tool for the detection of periodicities in binary time series, focusing on sleep/wake cycles. This methodology is based on a weighted histogram of cycle durations. In this paper, we compare our methodology with the Fourier spectral analysis on the basis of simulated and real binary data sets of various lengths. We also provide an approach to statistical validation of the periodicities determined with our methodology. Furthermore, we analyze the discriminating power of both methods in terms of standard deviation. Our results indicate that the Ciclograma is much more powerful than Fourier analysis when applied on this type of time series. 相似文献
7.
The objective of this study was to assess whether melatonin accelerates the re-entrainment of locomotor activity after 6 h
of advance and delay phase shifts following exposure to LD 12:12 cycle (simulating jet-lag/shift work). An experimental group
of adult male field mice Mus booduga were subjected to melatonin (1 mg/kg) through i.p. and the control group were treated
with 50 % DMSO. The injections were administered on three consecutive days following 6h of phase advance and delay, at the
expected time of “lights off”. The results show that melatonin accelerates the re-entrainment after phase advance (29%) when
compared with control mice. In the 6 h phase delay study, the experimental mice (melatonin administered) take more cycles
for re-entrainment (51%) than the control. Further, the results suggest that though melatonin may be useful for the treatment
of jet-lag caused by eastward flight (phase advance) it may not be useful for westward flight (phase delay) jet-lag 相似文献
8.
Schaub C. D.; Tankersley C.; Schwartz A. R.; Smith P. L.; Robotham J. L.; O'Donnell C. P. 《Journal of applied physiology》1998,85(1):366-371
Genetic determinants may contribute to the large variability inarterial blood pressure responses to changes in sleep/wake state inhumans. In this study, we developed techniques to examine therelationship between sleep/wake state and mean arterial pressure (MAP)in unrestrained, genetically identical mice (C57BL/6J;n = 9). The left common carotid arterywas catheterized, and arterial blood gases were analyzed 24-48 hpostsurgery to verify normal respiratory and metabolic function. Theanimals were then allowed to cycle naturally through sleep/wake statesover a 3- to 4-h period while continuous polysomnography and arterialpressure measurements were made. The MAP decreased fromquiet wakefulness to non-rapid-eye-movement sleep (9.8 ± 1.3 mmHg;P < 0.001) and further decreasedfrom non-rapid-eye-movement to rapid-eye-movement sleep (9.7 ± 1.8 mmHg; P < 0.001). We conclude thatthe inbred strain of C57BL/6J mice exhibits significant and consistentchanges in MAP related to sleep/wake state. Future studies can compare responses in this strain of mice with those in other inbred or transgenic mice to determine whether specific genes regulate arterial blood pressure responses to sleep/wake state. 相似文献
9.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off. 相似文献
10.
Jean-Etienne Poirrier François Guillonneau Jenny Renaut Kjell Sergeant Andre Luxen Pierre Maquet Pierre Leprince 《Proteome science》2008,6(1):14
Background
To identify the biochemical changes induced by sleep deprivation at a proteomic level, we compared the hippocampal proteome of rats either after 4 hours of sleep or sleep deprivation obtained by gentle handling. Because sleep deprivation might induce some stress, we also analyzed proteomic changes in rat adrenals in the same conditions. After sleep deprivation, proteins from both tissues were extracted and subjected to 2D-DIGE analysis followed by protein identification through mass spectrometry and database search. 相似文献11.
A. K. Sinha R. D. Claranello W. C. Dement J. D. Barchas 《Journal of neurochemistry》1973,20(4):1289-1290
I n R ecent years biogenic amines have been implicated in the control mechanism for induction and maintenance of sleep processes (J ouvet , 1969). Investigators have looked for changes in the rate of synthesis of cerebral norepinephrine from [3 H]tyrosine after REM sleep deprivation and reported increased rates of synthesis during REM sleep deprivation (M ark , H einer , M andel and G odin , 1969) and REM sleep rebound following 91 h of deprivation (P ujol , M ouret and G lowinski , 1968). Because tyrosine is thought to be the rate-limiting enzyme (U denfriend , 1966) in the synthetic pathways for norepinephrine and since the above-mentioned studies are suggestive of changes in the activity of the enzyme, we decided to measure tyrosine hydroxylase activity following REM sleep deprivation. 相似文献
12.
Hypothalamic neurons expressing neuropeptide orexins are critically involved in the control of sleep and wakefulness. Although the activity of orexin neurons is thought to be influenced by various neuronal input as well as humoral factors, the direct consequences of changes in the activity of these neurons in an intact animal are largely unknown. We therefore examined the effects of orexin neuron-specific pharmacogenetic modulation in vivo by a new method called the Designer Receptors Exclusively Activated by Designer Drugs approach (DREADD). Using this system, we successfully activated and suppressed orexin neurons as measured by Fos staining. EEG and EMG recordings suggested that excitation of orexin neurons significantly increased the amount of time spent in wakefulness and decreased both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep times. Inhibition of orexin neurons decreased wakefulness time and increased NREM sleep time. These findings clearly show that changes in the activity of orexin neurons can alter the behavioral state of animals and also validate this novel approach for manipulating neuronal activity in awake, freely-moving animals. 相似文献
13.
14.
The ATP-Mg/Pi carrier in liver mitochondria is activated by micromolar Ca2+ and mediates net adenine nucleotide transport into and out of the mitochondrial matrix. The purpose of this study was to characterize certain features of ATP-Mg/Pi carrier activity that are essential for understanding how the mitochondrial adenine nucleotide content is regulated. The relative importance of ATP and ADP as transport substrates was investigated using specific trap assays to measure their separate rates of carrier-mediated efflux with Pi as the external counterion. Under energized conditions ATP efflux accounted for 88% of total ATP+ADP efflux. With oligomycin present to lower the matrix ATP/ADP ratio, ATP efflux was eliminated and ADP efflux was relatively unaffected. Mg2+ was stoichiometrically required for ATP influx and is probably transported simultaneously with ATP. Ca2+ and Mn2+ could substitute for the stoichiometric Mg2+ requirement. ADP influx and Pi-induced adenine nucleotide efflux were unaffected by external Mg2+. Experiments with Pi analogues suggested that Pi is transported as the divalent anion, HPO4(2-). The results show that ATP-Mg and divalent Pi are the major transport substrates; the most probable transport mechanism for the ATP-Mg/Pi carrier is an electroneutral exchange. The results are consistent with the hypothesis that the direction and magnitude of net adenine nucleotide movements are determined mainly by the (ATP-Mg)2- and HPO4(2-) concentration gradients across the inner mitochondrial membrane. 相似文献
15.
16.
Adenine nucleotide transport over the carboxyatractyloside-insensitive ATP-Mg/Pi carrier was assayed in isolated rat liver mitochondria with the aim of investigating a possible regulatory role for Ca2+ on carrier activity. Net changes in the matrix adenine nucleotide content (ATP + ADP + AMP) occur when ATP-Mg exchanges for Pi over this carrier. The rates of net accumulation and net loss of adenine nucleotides were inhibited when free Ca2+ was chelated with EGTA and stimulated when buffered [Ca2+]free was increased from 1.0 to 4.0 microM. The unidirectional components of net change were similarly dependent on Ca2+; ATP influx and efflux were inhibited by EGTA in a concentration-dependent manner and stimulated by buffered free Ca2+ in the range 0.6-2.0 microM. For ATP influx, increasing the medium [Ca2+]free from 1.0 to 2.0 microM lowered the apparent Km for ATP from 4.44 to 2.44 mM with no effect on the apparent Vmax (3.55 and 3.76 nmol/min/mg with 1.0 and 2.0 microM [Ca2+]free, respectively). Stimulation of influx and efflux by [Ca2+]free was unaffected by either ruthenium red or the Ca2+ ionophore A23187. Calmodulin antagonists inhibited transport activity. In isolated hepatocytes, glucagon or vasopressin promoted an increased mitochondrial adenine nucleotide content. The effect of both hormones was blocked by EGTA, and for vasopressin, the effect was blocked also by neomycin. The results suggest that the increase in mitochondrial adenine nucleotide content that follows hormonal stimulation of hepatocytes is mediated by an increase in cytosolic [Ca2+]free that activates the ATP-Mg/Pi carrier. 相似文献
17.
James FO Boivin DB Charbonneau S Bélanger V Cermakian N 《Chronobiology international》2007,24(6):1009-1034
The rhythmic expression of circadian clock genes in the neurons of the suprachiasmatic nucleus (SCN) underlies the manifestation of endogenous circadian rhythmicity in behavior and physiology. Recent evidence demonstrating rhythmic clock gene expression in non-SCN tissues suggests that functional clocks exist outside the central circadian pacemaker of the brain. In this investigation, the nature of an oscillator in peripheral blood mononuclear cells (PBMCs) is evaluated by assessing clock gene expression throughout both a typical sleep/wake cycle (LD) and during a constant routine (CR). Six healthy men and women aged (mean±SEM) 23.7±1.6 yrs participated in this five-day investigation in temporal isolation. Core body temperature and plasma melatonin concentration were measured as markers of the central circadian pacemaker. The expression of HPER1, HPER2, and HBMAL1 was quantified in PBMCs sampled throughout an uninterrupted 72 h period. The core body temperature minimum and the midpoint of melatonin concentration measured during the CR occurred 2:17±0:20 and 3:24 ±0:09 h before habitual awakening, respectively, and were well aligned to the sleep/wake cycle. HPER1 and HPER2 expression in PBMCs demonstrated significant circadian rhythmicity that peaked early after wake-time and was comparable under LD and CR conditions. HBMAL1 expression was more variable, and peaked in the middle of the wake period under LD conditions and during the habitual sleep period under CR conditions. For the first time, bi-hourly sampling over three consecutive days is used to compare clock gene expression in a human peripheral oscillator under different sleep/wake conditions. 相似文献
18.
19.
Symptoms of Parkinson's disease do not present until the degeneration of nigrostriatal dopaminergic neurons is nearly complete. Maintenance of dopaminergic tone governing striatal efferents is postulated to preserve motor control during the presymptomatic phase, but the neuroadaptation responsible for normalization is not completely understood. In particular, the prevailing view that surviving dopaminergic neurons compensate by up-regulating release has been difficult to demonstrate directly. Here we investigate dopaminergic neurotransmission in the hemiparkinsonian rat using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. Electrical stimulation was used to elicit extracellular dopamine levels mimicking the steady-state dynamics of tonic dopaminergic signaling. In agreement with microdialysis studies, evoked steady-state dopamine levels remained constant over the entire lesion spectrum (0 to approximately 85%) observed during the presymptomatic stage. Kinetic analysis of the voltammetric recordings demonstrated that evoked dopamine concentrations were normalized without plasticity of dopamine release and uptake, suggesting that the primary mechanisms controlling ambient levels of extracellular dopamine were not actively altered. In the present study, we formalize this neuroadaptation as "passive stabilization" . We further propose that passive stabilization is mediated by the simple physical principles of diffusion and steady state, is predicated on extrasynaptic transmission, and forms the basis for a new compensation model of preclinical parkinsonism. 相似文献
20.
L Dini A M Giudetti M Ruzittu G V Gnoni V Zara 《Biochemistry and molecular biology international》1999,47(4):607-614
After in vivo administration of lead nitrate, functional changes of the mitochondrial tricarboxylate carrier and of the cytosolic lipogenic enzymes acetyl-CoA carboxylase and fatty acid synthetase have been detected in rat liver. The rate of citrate transport was greatly reduced in rats during both the proliferative phase (3 days after the lead nitrate administration) and the involutive phase (5 days after the metal injection), which follows hepatic hyperplasia and corresponds to the peak of hepatocyte apoptosis. In both phases, a decrease of the lipogenic enzyme activities has been detected. In treated animals, an alteration of mitochondrial lipid composition has also been found. The modified lipid microenvironment could be responsible for the decreased carrier activity which, in turn, may account for the reduced activities of the lipogenic enzymes. 相似文献