首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human activities, such as logging, modify the forest structure and the microenvironments of the original Nothofagus forests. The aims of this work were to evaluate changes in the diversity and relative abundance of birds and to analyze their trophic relationships with insect and plant communities along the Nothofagus pumilio forest management cycle. Data was collected using a point sampling method along transects located in different forest structures during the summer season, by direct (sight) and indirect (hearing) recognition following sunrise. Bird diversity and abundance significantly varied along the forest management cycle. Seven new species appeared after harvest, but the total number did not vary by the end of the forest management cycle, and there was no significant loss of species. Bird abundance was directly related to the insect abundance and plant biomass. Relationship between groups (lower plants, monocotyledons and dicotyledonous) is also discussed. Major studies in bird ecology are necessary to develop new silvicultural alternatives based on the more sensitive species to harvest. Forest management strategies and mitigation alternatives must be incorporated into forest planning in order to maintain the original structure of bird communities and the equilibrium with other forest species.  相似文献   

2.
Human activities, like logging, modify the dynamics and composition of virgin forest, affecting the equilibrium between the natural species. Nothofagus forests sustain an entomofauna that is endemic, and includes relict species of significant conservation importance. The aim of this work was to evaluate the changes in insect diversity and abundance of a Nothofagus pumilio forest managed by a shelterwood cut system. Insect capture was carried out using a set of traps along a horizontal and vertical gradient. Sampling was taken in day and night conditions, in post-harvesting situations and different phases of stand development. The diversity and abundance of insects varied significantly during the forest cycle (defined as 100–200 years according to site quality). One morphospecies was lost every 11 years until the end of the forest cycle. It may be necessary to modify the current silvicultural system to one that conserves insect diversity through a reduction in disturbance.  相似文献   

3.
Soil microorganisms play an important role in soil quality and they interact closely with vegetation. Little is known about yeast diversity and function in forest soil ecosystems and their interactions with other biotic soil components, particularly in the mycorrhizosphere. We studied the diversity of yeasts inhabiting the bulk-soil, rhizosphere and ectomycorrhizosphere of a Nothofagus pumilio forest in Nahuel Huapi National Park (Bariloche, Argentina). Ectomycorrhizal infection was observed in all N. pumilio trees studied. A total of 126 yeast isolates were obtained, including 18 known and three possibly new species. Basidiomycetous yeasts were predominant in all soil fractions, and the most frequently isolated species was Cryptococcus podzolicus. Diversity indices and multivariate analyses were used to study and compare yeast communities in the bulk-soil, rhizosphere and ectomycorrhizosphere. Yeasts able to ferment glucose were found associated with the rhizosphere. Many of the recovered yeast species were associated with lignocelluloses compound degradation, which suggest that yeast plays an important role as a decomposer in these forest soils. Each soil fraction has a distinct yeast assemblage related to their physiologic capacities and soil nutrient availability.  相似文献   

4.
Abstract: The objective of this study was to analyse how stand age and precipitation influence abundance and diversity of epiphytic macrolichens in southern beech Nothofagus forests, estimated by lichen litter sampling. Five sites of Nothofagus dombeyi (Mirbel) Oersted were selected in Nahuel Huapi National Park, Argentina. At each site, lichen fragments from the forest floor were collected at 12.5 m2 plots in pairs of young and mature N. dombeyi forest. Additionally, two sites with multi‐aged subalpine Nothofagus pumilio (Poepp. et Endl.) Krasser forest were investigated in a similar manner. Average litterfall biomass per stand varied from less than 1 kg ha?1 in a young low‐precipitation stand to a maximum of 20 kg ha?1 in a mature high‐precipitation stand. In places with higher precipitation, litterfall biomass in N. dombeyi forest was considerably higher in old stands as compared with young ones. In places with less than 2000 mm of precipitation, differences in biomass were less pronounced. Old humid stands contained about twice as many taxa in the litter as old low‐precipitation stands and young stands in general. Mature stands in low‐precipitation sites only contained 17% of the litter biomass as compared with mature stands in high‐precipitation sites. Epiphytic lichen composition changed from predominating fruticose lichens (Usnea spp. and Protousnea spp.) in low‐precipitation stands to Pseudocyphellaria spp., Nephroma spp. and other foliose lichens, in the high‐precipitation stands. There were no clear differences in the proportion of fruticose and foliose lichens between young and old stands. Fruticose lichens dominated litter biomass in both N. pumilio sites.  相似文献   

5.
6.
Previous studies suggest that forest regeneration in grasslands is often slow because of grass competition and fire and that regeneration may be dependent on fire‐resistant savannah trees. To examine the potential of savannah trees in facilitating regeneration, species diversity, number and total abundance of species of woody plants were determined below and away from Acacia sieberiana and Erythrina abyssinica tree crowns. Additionally, crown size and distance from a natural forest were estimated to determine their influence on natural regeneration. Results showed that the environment under tree crowns positively influence diversity compared to that outside crowns: including for biodiversity (3.08 versus 2.82), the number of species and total abundance (P < 0.001). However, distance from the forest to trees in the grassland had no influence on these parameters. Vertebrate animals were found to be the major seed dispersers in grasslands of Kibale. We concluded that forests that establish below crowns of savannah trees will be more diverse than those in treeless areas and that crown size is more important than distance from natural forest in facilitating regeneration. Furthermore, A. sieberiana could be more suitable in facilitating natural regeneration, while animals have proved to be vital for regeneration.  相似文献   

7.
AFLP分子标记技术具有快速、方便、分辨率高、重复性好等优点,在茶树种质资源研究中应用潜力很大。本文简要介绍AFLP分析技术的原理、特点与进展,并综述近年来AFLP标记技术在茶树种质资源研究中的应用。  相似文献   

8.
多茎干萌生策略可赋予树木抗干扰能力。在山地生境中,树木的多茎干萌生有助于维持土壤稳定性以及森林生态系统功能的稳定性。 但对于多茎干萌生在何时(个体发育阶段偏好)、何地(生境偏好)发生,以及个体发育阶段和生境因子是否存在关联尚不了解。本文基于钱江 源国家公园古田山5 ha亚热带常绿阔叶林监测样地,研究了99个20 m × 20 m样方内常见树种青冈(Quercus glauca)萌生的发生时间与空间分 布规律。研究结果表明,青冈种群内存在3种萌生模式,大部分个体在生活史早期阶段即幼苗或者幼树阶段出现多茎干萌生。与凹凸度有关 的环境干扰可能是青冈多茎干萌生的主要驱动因素。此外,距离海拔较高的山脊越近,青冈多茎干萌生发生的越早。这一发现,强调了考虑 个体发育的重要性。因此,在研究其他森林或气候带中树种多茎干萌生策略的环境驱动因素时,要结合考虑个体发育,以期更好的理解多茎 干萌生策略及其对群落结构与功能的影响  相似文献   

9.
Piper FI  Fajardo A 《Annals of botany》2011,108(5):907-917

Background and Aims

Trees universally decrease their growth with age. Most explanations for this trend so far support the hypothesis that carbon (C) gain becomes limited with age; though very few studies have directly assessed the relative reductions of C gain and C demand with tree age. It has also been suggested that drought enhances the effect of C gain limitation in trees. Here tests were carried out to determine whether C gain limitation is causing the growth decay with tree age, and whether drought accentuates its effect.

Methods

The balance between C gain and C demand across tree age and height ranges was estimated. For this, the concentration of non-structural carbohydrates (NSCs) in stems and roots of trees of different ages and heights was measured in the deciduous temperate species Nothofagus pumilio. An ontogenetic decrease in NSCs indicates support for C limitation. Furthermore, the importance of drought in altering the C balance with ontogeny was assessed by sampling the same species in Mediterranean and humid climate locations in the southern Andes of Chile. Wood density (WD) and stable carbon isotope ratios (δ13C) were also determined to examine drought constraints on C gain.

Key Results

At both locations, it was effectively found that tree growth ultimately decreased with tree age and height. It was found, however, that NSC concentrations did not decrease with tree age or height when WD was considered, suggesting that C limitation is not the ultimate mechanism causing the age/height-related declining tree growth. δ13C decreased with tree age/height at the Mediterranean site only; drought effect increased with tree age/height, but this pattern was not mirrored by the levels of NSCs.

Conclusions

The results indicate that concentrations of C storage in N. pumilio trees do not decrease with tree age or height, and that reduced C assimilation due to summer drought does not alter this pattern.  相似文献   

10.
Abstract

Old-growth Nothofagus pumilio forests in Chile are managed employing a shelterwood system. A wide range of canopy openings can be found in old-growth and managed forests. Plant survival and growth in the understorey are influenced by the light available. There are limitations (practical and economic) to monitoring the light in the understorey. The aim of this study was to assess the options to estimate the forest understorey photosynthetic photon flux density (PPFD) measured during the growing season (GS) using canopy openness (CO) estimated by means of hemispherical photographs (HP). PPFD was measured using 31 sensors (Li-190SA quantum sensor) over the course of three GSs (October to March). The sensors were installed in an old-growth stand and another subjected to a regeneration felling under a shelterwood system. One HP was taken above each sensor (during the final GS) and the CO estimated. A comparison of the three seasons revealed that the sum of the PPFD during the GSs did not differ significantly. The CO could be used to effectively predict the sum of the PPFD during a GS (R 2 = 0.959). These results demonstrate the usefulness of HPs as a means to estimate the sum of the PPFD during a GS.  相似文献   

11.
The growth and physiological characteristics of canopy trees are expected to differ systematically from those of understory trees on the basis of size-dependent aspects of biomechanics, resource availability, and life history. Although such differences have previously been noted, there has been relatively little effort to quantify these in terms of interspecific allometric relationships. Asymptotic maximal height (Hmax) is advocated as a measure of the size of dicotyledonous woody plants for this purpose. Height diameter (H–D) relationships in 38 species within six genera of Malaysian rain forest trees are well described by an asymptotic model, and thus provide a basis for estimating Hmax using static observational data. Three important aspects of tree growth strategies are shown to be predictable on the basis of these values: average tree growth rates are positively related to Hmax, while wood density and the initial allometric slope of (species-specific) H–D relationships are negatively related to Hmax. These patterns may be explained by an association of low light levels with slow growth and high density wood in understory species; the latter property may in turn allow for relatively high allometric slopes of H–D relationships in saplings of small-statured species. Analyses that control for phylogenetic differences provide evidence that such interspecific allometric patterns are the product of convergent evolution. These results are consistent with the idea that much ecological variation within species-rich taxa of southeast Asian rain forest trees is related to differentiation along a vertical axis of tree size.  相似文献   

12.
Isozymes and DNA markers in gene conservation of forest trees   总被引:6,自引:0,他引:6  
For long-lived plants that have to cope with high temporal and spatial environmental heterogeneity, genetic diversity is of prime importance for species persistence. Detrimental anthropogenic impact on the gene pool of forest trees calls for conservation of genetic resources. Potentials and limitations of isozymes and DNA markers in forest genetic conservation are reviewed. These markers can contribute to conservation with respect to the delimitations of species and hybrid zones, as well as the assessment of genetic diversity within and among populations. Markers are valuable to identify resource populations, since today‘s genetic diversity in forest trees is predominantly the result of plant history (e.g. glacial refuges, migration). Several suggestions have been put forward to optimize sampling of in situ or ex situ populations on the grounds of marker data. Restraint in this area is recommended. Different types of genetic markers (terpenes, isozymes, nuclear and extrachromosomal DNA polymorphisms) and quantitative traits yield different information about genetic diversity and population differentiation. Hence identification of resource populations should not solely be based upon a certain marker type or on quantitative traits alone. The capability of available markers to predict or assess adaptive potentials in forest tree populations is still very limited. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
 AFLP markers were used to analyse the intra- and interspecific relationships among 22 natural populations of 13 Patagonian species of Berberis and the relationships among the taxa belonging to homoploid and polyploid complexes. Seven primer combinations gave rise to 231 AFLP bands, of which 199 were polymorphic. Correspondence between AFLP data, morphological traits and seed protein bands was also assessed. The dendrogram inferred from AFLP fingerprints showed that, in general, populations of the same species formed closely related groups with high coefficients of similarity. Principal co-ordinates analysis showed two separate subgroups: (i) B. bidentata and their putative ancestors –B. darwinii and B. linearifolia– which form a homogamic group, and (ii) B. buxifolia, B. heterophylla and B. parodii– which could form a polyploid hybrid complex. Received March 21, 2001 Accepted September 11, 2001  相似文献   

14.
Gibbons  J.M.  Newbery  D.M. 《Plant Ecology》2003,164(1):1-18
The water relations of two tree species in the Euphorbiaceae werecompared to test in part a hypothesis that the forest understorey plays anintegral role in drought response. At Danum, Sabah, the relatively commonspecies Dimorphocalyx muricatus is associated with ridgeswhilst another species, Mallotus wrayi, occurs widely bothon ridges and lower slopes. Sets of subplots within two 4 -hapermanent plots in this lowland dipterocarp rain forest, were positioned onridges and lower slopes. Soil water potentials were recorded in1995–1997,and leaf water potentials were measured on six occasions. Soil water potentialson the ridges (–0.047 MPa) were significantly lower than onthe lower slopes (–0.012 MPa), but during the driest periodin May 1997 they fell to similarly low levels on both sites (–0.53MPa). A weighted 40-day accumulated rainfall index was developedtomodel the soil water potentials. At dry times, D.muricatus(ridge) had significantly higher pre-dawn (–0.21 v.–0.57 MPa) and mid-day (–0.59 v.–1.77 MPa) leaf water potentials than M.wrayi (mean of ridge and lower slope). Leaf osmotic potentials ofM. wrayi on the ridges were lower (–1.63MPa) than on lower slopes (–1.09 MPa), withthose for D. muricatus being intermediate (–1.29MPa): both species adjusted osmotically between wet and dry times.D. muricatus trees were more deeply rooted thanM. wrayi trees (97 v. 70cm). M. wrayi trees had greaterlateral root cross-sectional areas than D. muricatus treesalthough a greater proportion of this sectional area for D.muricatus was further down the soil profile. D.muricatus appeared to maintain relatively high water potentialsduring dry periods because of its access to deeper water supplies and thus itlargely avoided drought effects, but M. wrayi seemed to bemore affected yet tolerant of drought and was more plastic in its response. Theinteraction between water availability and topography determines these species'distributions and provides insights into how rain forests can withstandoccasional strong droughts.  相似文献   

15.
红松阔叶林倒木贮量动态的研究   总被引:21,自引:1,他引:21  
在森林倒木研究的基础上探讨长白山红松阔叶林倒木贮量的动态,涉及红松阔叶林倒木分解及其贮量的动态规律。研究表明,倒木分解,除心腐木外,均由表及里进行;倒木分解速率在其它生态条件相同时因树种、直径和部位而异。红松阔叶林倒木贮量动态包括现有倒木贮量和倒木年输入量两个分解动态过程,现有倒木贮量在头100年其干重迅速减少,其中椴树比红松尤速,前者分解91%,后者为72%.林地倒木贮量动态与倒木年输入量分解动态相似,但前者在分解初期贮量增加较大,因为部分现有倒木未完全分解;100年后趋于一致,并恒定于16~17t·hm-2,直至群落的顶极阶段结束.  相似文献   

16.
* Here we investigated photosynthetic traits of evergreen species under a deciduous canopy in a temperate forest and revealed the importance of CO2 assimilation during winter for annual CO2 assimilation. * Saplings were shaded by the canopy trees from spring through to autumn, but were less shaded during the winter months. Photosynthetic rates at light saturation (Aarea) were lower during winter than during the growing season. Aarea was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus during the winter, but differed little during summer and autumn. * Estimated daily CO2 assimilation (Aday) was higher during the winter than during the growing season in Camellia, Ilex and Photinia but was higher than that during the growing season only at the beginning and end of winter in Castanopsis, Cleyera and Quercus. Aday was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus but differed little among them during the growing season. * These results reveal the importance of winter CO2 assimilation for the growth of Camellia, Ilex and Photinia. Furthermore, differences in annual CO2 assimilation among species are strongly modified by species-specific photosynthetic traits during the winter under deciduous canopy trees.  相似文献   

17.
18.
19.
The conversion of natural habitats to human land uses often increases local temperatures, creating novel thermal environments for species. The variable responses of ectotherms to habitat conversion, where some species decline while others persist, can partly be explained by variation among species in their thermal niches. However, few studies have examined thermal niche variation within species and across forest‐land use ecotones, information that could provide clues about the capacity of species to adapt to changing temperatures. Here, we quantify individual‐level variation in thermal traits of the tropical poison frog, Oophaga pumilio, in thermally contrasting habitats. Specifically, we examined local environmental temperatures, field body temperatures (Tb), preferred body temperatures (Tpref), critical thermal maxima (CTmax), and thermal safety margins (TSM) of individuals from warm, converted habitats and cool forests. We found that frogs from converted habitats exhibited greater mean Tb and Tpref than those from forests. In contrast, CTmax and TSM did not differ significantly between habitats. However, CTmax did increase moderately with increasing Tb, suggesting that changes in CTmax may be driven by microscale temperature exposure within habitats rather than by mean habitat conditions. Although O. pumilio exhibited moderate divergence in Tpref, CTmax appears to be less labile between habitats, possibly due to the ability of frogs in converted habitats to maintain their Tb below air temperatures that reach or exceed CTmax. Selective pressures on thermal tolerances may increase, however, with the loss of buffering microhabitats and increased frequency of extreme temperatures expected under future habitat degradation and climate warming. Abstract in Spanish is available with online material.  相似文献   

20.
BACKGROUND AND AIMS: Growth in trunk height in canopy openings is important for saplings. How saplings increase height growth in canopy openings may relate to crown architectural constraints. Responses of crown development to canopy openings in relation to trunk height growth were studied for saplings (0.2-2.5 m tall) of eight tropical submontane forest tree species in Indonesia. The results of this study were also compared with those of temperate trees in northern Japan. METHODS: The crown architecture differed among the eight tropical species, i.e. they had sparsely to highly developed branching structures. Crown allometry was compared among the eight species in each canopy condition (closed canopy or canopy openings), and between closed canopy and canopy openings within a species. A general linear regression model was used to analyse how each species increases height growth rate in canopy openings. Crown allometry and its plasticity were compared between tropical and temperate trees by a nested analysis of covariance. KEY RESULTS: Tropical submontane trees had responses similar to cool-temperate trees, showing an increase in height in canopy openings, i.e. taller saplings of sparsely branched species increase height growth rates by increasing the sapling leaf area. Cool-temperate trees have a wider crown projection area and a smaller leaf area per crown projection area to avoid self-shading within a crown compared with tropical submontane trees. Plasticity of the crown projection area is greater in cool-temperate trees than in tropical submontane trees, probably because of the difference in leaf longevity. CONCLUSIONS: This study concluded that interspecific variation in the responses of crown development to canopy openings in regard to increasing height related to the species' branching structure, and that different life-forms, such as evergreen and deciduous trees, had different crown allometry and plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号