首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
脐静脉和骨髓来源的间充质干细胞的比较研究   总被引:5,自引:0,他引:5  
间充质干细胞(MSCs)的来源有限,成人骨髓是MSCs的主要来源,这极大地限制了其在实验和临床中的应用。为拓宽MSCs来源,从细胞形态、生长特性、免疫表型和多向分化能力等四个方面对人脐静脉来源和成人骨髓来源的间充质干细胞进行了比较研究。结果表明,人脐静脉来源和成人骨髓来源的 MSCs具有相似的生物学特征,成纤维细胞样形态生长,并具有强大的体外扩增和多向分化能力。人脐静脉来源的MSCs可替代成人骨髓MSCs,作为满足实验和临床需要的重要来源。  相似文献   

3.
4.
Umbilical cord (UC) and placenta (P) have been suggested as alternatives to bone marrow (BM) as sources of mesenchymal stem cells (MSC) for cell therapy, with both UC‐ and P‐MSC possess immunophenotypic and functional characteristics similar to BM‐MSC. However, their migration capacity, which is indispensable during tissue regeneration process, is unclear. Under defined conditions, the migration capacity of BM‐ and P‐MSC was found 5.9‐ and 3.2‐folds higher than that of UC‐MSC, respectively. By the use of 2‐DE and combined MS and MS/MS analysis, six differentially expressed proteins were identified among these MSC samples, with five of them known to be involved in cell migration as migration enhancing or inhibiting proteins. Consistent with their migration capacity, the levels of migration enhancing proteins including cathepsin B, cathepsin D and prohibitin,were significantly lower in UC‐MSC when compared with those in BM‐ and P‐MSC. For the migration inhibiting proteins such as plasminogen activator inhibitor‐1 (PAI‐1) and manganese superoxide dismutase, higher expression was found in the UC‐MSC. We also showed that the overexpression of the PAI‐1 impaired the migration capacity of BM‐ and P‐MSC while silencing of PAI‐1 enhanced the migration capacity of UC‐MSC. Our study indicates that PAI‐1 and other migration‐related proteins are pivotal in governing the migration capacity of MSC.  相似文献   

5.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

6.
7.
Mesenchymal stem cells (MSCs) have been investigated as promising candidates for use in new cell-based therapeutic strategies such as mesenchyme-derived tissue repair. MSCs are easily isolated from adult tissues and are not ethically restricted. MSC-related literature, however, is conflicting in relation to MSC differentiation potential and molecular markers. Here we compared MSCs isolated from bone marrow (BM), umbilical cord blood (UCB), and adipose tissue (AT). The isolation efficiency for both BM and AT was 100%, but that from UCB was only 30%. MSCs from these tissues are morphologically and immunophenotypically similar although their differentiation diverges. Differentiation to osteoblasts and chondroblasts was similar among MSCs from all sources, as analyzed by cytochemistry. Adipogenic differentiation showed that UCB-derived MSCs produced few and small lipid vacuoles in contrast to those of BM-derived MSCs and AT-derived stem cells (ADSCs) (arbitrary differentiation values of 245.57 +/- 943 and 243.89 +/- 145.52 mum(2) per nucleus, respectively). The mean area occupied by individual lipid droplets was 7.37 mum(2) for BM-derived MSCs and 2.36 mum(2) for ADSCs, a finding indicating more mature adipocytes in BM-derived MSCs than in treated cultures of ADSCs. We analyzed FAPB4, ALP, and type II collagen gene expression by quantitative polymerase chain reaction to confirm adipogenic, osteogenic, and chondrogenic differentiation, respectively. Results showed that all three sources presented a similar capacity for chondrogenic and osteogenic differentiation and they differed in their adipogenic potential. Therefore, it may be crucial to predetermine the most appropriate MSC source for future clinical applications.  相似文献   

8.
9.
Numerous papers have reported that mesenchymal stem cells (MSCs) can be isolated from various sources such as bone marrow, adipose tissue and others. Nonetheless it is an open question whether MSCs isolated from different sources represent a single cell lineage or if cells residing in different organs are separate members of a family of MSCs. Subendothelial tissue of the umbilical cord vein has been shown to be a promising source of MSCs. The aim of this study was to isolate and characterize cells derived from the subendothelial layer of umbilical cord veins as regards their clonogenicity and differentiation potential. The results from these experiments show that cells isolated from the umbilical cord vein displayed fibroblast-like morphology and grew into colonies. Immunophenotyping by flow cytometry revealed that the isolated cells were negative for the hematopoietic line markers HLA-DR and CD34 but were positive for CD29, CD90 and CD73. The isolated cells were also positive for survivin, Bcl-2, vimentin and endoglin, as confirmed by RT-PCR and immunofluorescence. These cells can be induced to differentiate into osteogenic and adipogenic cells, but a new finding is that these cells can be induced to differentiate into endothelial cells expressing CD31, vWF and KDR-2, and also form vessel-like structures in Matrigel. The differentiated cells stopped expressing survivin, thus showing a diminished proliferative potential. It can be assumed that the subendothelial layer of the umbilical cord vein contains a population of cells with the overall characteristics of MSCs, with the additional capability to transform into endothelial cells.  相似文献   

10.
11.
Kim J  Shin JM  Jeon YJ  Chung HM  Chae JI 《PloS one》2012,7(5):e32350
Mesenchymal stem cells (MSCs) are one of the most attractive therapeutic resources in clinical application owing to their multipotent capability, which means that cells can differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle and marrow stroma. Depending on the cellular source, MSCs exhibit different application potentials according to their different in vivo functions, despite similar phenotypic and cytological characteristics. To understand the different molecular conditions that govern the different application or differentiation potential of each MSC according to cellular source, we generated a proteome reference map of MSCs obtained from bone marrow (BM), umbilical cord blood (CB) and peripheral blood (PB). We identified approximately 30 differentially regulated (or expressed) proteins. Most up-regulated proteins show a cytoskeletal and antioxidant or detoxification role according to their functional involvement. Additionally, these proteins are involved in the increase of cell viability, engraftment and migration in pathological conditions in vivo. In summary, we examined differentially expressed key regulatory factors of MSCs obtained from several cellular sources, demonstrated their differentially expressed proteome profiles and discussed their functional role in specific pathological conditions. With respect to the field of cell therapy, it may be particularly crucial to determine the most suitable cell sources according to target disease.  相似文献   

12.
一种大量快速分离脐带间充质干细胞的新方法   总被引:1,自引:0,他引:1  
目的:探讨体外快速大量分离脐带间充质干细胞的新方法。方法:采用复合胶原NB4、dispaseII、透明质酸酶三种酶消化3h,加入PBSA溶液稀释,离心获得脐带间充质干细胞,培养;用流式细胞仪对P3代细胞进行表面标记的鉴定,用化学诱导的方法使第3代细胞向脂肪、骨、软骨细胞分化,2~4周后,分别行oilred、Safranin'O和茜素红染色,倒置显微镜下观察诱导结果。结果:经3种酶消化和PBSA稀释,短时间内从脐带中获得了大量间充质干细胞;伴随着细胞的传代,形态逐渐均一,传至第3代,细胞的形态已基本相似;流式细胞仪鉴定,细胞强表达间充质细胞的特异性标记CD90,CD73,CD105,而不表达造血系或内皮系细胞的标记CD45、CD14、CD11、CD34、CD19,也不表达主要组织相容性抗原HLA-DR;向脂肪细胞诱导后第4周,oilred染色见细胞内大量红染的脂滴;向软骨细胞诱导后第4周,Safranin'O染色见多数切片呈阳性,细胞团块中存在大量软骨特异性的陷窝样结构;向骨细胞诱导后第4周,茜素红染色发现肉眼可见的广泛散在的红色阳性钙结节。结论:本研究所采用的3种酶消化结合PBSA稀释的方法可以快速获得脐带间...  相似文献   

13.
Perivascular cells are known to be ancestors of mesenchymal stem cells (MSCs) and can be obtained from heart, skin, bone marrow, eye, placenta and umbilical cord (UC). However detailed characterization of perivascular cells around the human UC vein and comparative analysis of them with MSCs haven’t been done yet. In this study, our aim is to isolate perivascular cells from human UC vein and characterize them versus UC blood MSCs (UCB-MSCs). For this purpose, perivascular cells around the UC vein were isolated enzymatically and then purified with magnetic activated cell sorting (MACS) method using CD146 Microbead Kit respectively. MSCs were isolated from UCB by Ficoll density gradient solution. Perivascular cells and UCB-MSCs were characterized by osteogenic and adipogenic differentiation procedures, flow cytometric analysis [CD146, CD105, CD31, CD34, CD45 and alpha-smooth muscle actin (α-SMA)], and immunofluorescent staining (MAP1B and Tenascin C). Alizarin red and Oil red O staining results showed that perivascular cells and MSCs had osteogenic and adipogenic differentiation capacity. However, osteogenic differentiation capacity of perivascular cells were found to be less than UCB-MSCs. According to flow cytometric analysis, CD146 expression of perivascular cells were appeared to be 4.8-fold higher than UCB-MSCs. Expression of α-SMA, MAP1B and Tenascin-C from perivascular cells was determined by flow cytometry analysis and immunfluorescent staining. The results appear to support the fact that perivascular cells are the ancestors of MSCs in vascular area. They may be used as alternative cells to MSCs in the field of vascular tissue engineering.  相似文献   

14.
To evaluate the potential of three stem cells for cell therapy and tissue engineering applications, the biological behavior and osteogenic capacity of the newly introduced cord-blood-derived, unrestricted somatic stem cells (USSC) were compared with those of mesenchymal stem cells isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). There was no significant difference between the rates of proliferation of the three stem cells. During osteogenic differentiation, alkaline phosphatase (ALP) activity peaked on day 7 in USSC compared to BM-MSC which showed the maximum value of ALP activity on day 14. However, BM-MSC had the highest ALP activity and mineralization during osteogenic induction. In addition, AT-MSC showed the lowest capacity for mineralization during differentiation and had the lowest ALP activity on days 7 and 14. Although AT-MSC expressed higher levels of collagen type I, osteonectin and BMP-2 in undifferentiated state, but these genes were expressed higher in BM-MSC during differentiation. BM-MSC also expressed higher levels of ALP, osteocalcin and Runx2 during induction. Taking together, BM-MSC showed the highest capacity for osteogenic differentiation and hold promising potential for bone tissue engineering and cell therapy applications.  相似文献   

15.
16.
Cheng H  Qiu L  Ma J  Zhang H  Cheng M  Li W  Zhao X  Liu K 《Molecular biology reports》2011,38(8):5161-5168
Mesenchymal stem cells (MSC) which have self-renewal and multiple differentiation potential in vitro play important roles in regenerative medicine and tissue engineering. However, long-term culture in vitro leads to senescence which results in the growth arrest and reduction of differentiation. In this study, MSC derived from human bone-marrow (BM-MSC) and umbilical cord (UC-MSC) were cultured in vitro lasted to senescence. Senescence and apoptosis detection showed that the senescent cells increased significantly but the increase of apoptosis was not significant in the long term culture. Senescence related genes p16, p21 and p53 increased gradually in BM-MSC. However, p16 and p53 reduced and then increased but with the gradual increase of p21 in UC-MSC. Adipogenic differentiation decreased whereas the propensity for osteogenic differentiation increased in senescent MSC. Real time RT-PCR demonstrated that both C/EBPα and PPARγ decreased in senescent BM-MSC. However, in UC-MSC, PPARγ decreased but C/EBPα increased in late phase compared to early phase. The study demonstrated p21 was important in the senescence of BM-MSC and UC-MSC. C/EBPα and PPARγ could regulate the balance of adipogenic differentiation in BM-MSC but only PPARγ not C/EBPα was involved in the adipogenic differentiation in UC-MSC.  相似文献   

17.
Human mesenchymal stem cells isolated from the umbilical cord   总被引:16,自引:0,他引:16  
Mesenchymal stem cells (MSCs) are known as a population of multi-potential cells able to proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat and stroma. In this study human MSCs were successfully isolated from the umbilical cords. The research characteristics of these cells, e.g., morphologic appearance, surface antigens, growth curve, cytogenetic features, cell cycle, differentiation potential and gene expression were investigated. After 2weeks of incubation, fibroblast-like cells appeared to be dominant. During the second passage the cells presented a homogeneous population of spindle fibroblast-like cells. After more than 4months (approximately 26 passages), the cells continued to retain their characteristics. Flow cytometry analysis revealed that CD29, CD44, CD95, CD105 and HLA-I were expressed on the cell surface, but there was no expression of hematopoietic lineage markers, such as CD34, CD38, CD71 and HLA-DR. Chromosomal analysis showed the cells kept a normal karyotype. The cell cycle at the third passage showed the percentage of G(0)/G(1), G(2)/M and S phase were 88.86%, 5.69% and 5.45%, respectively. The assays in vitro demonstrated the cells exhibited multi-potential differentiation into osteogenic and adipogenic cells. Both BMI-1 and nucleostemin genes, expressed in adult MSCs from bone marrow, were also expressed in umbilical cord MSCs. Here we show that umbilical cords may be a novel alternative source of human MSCs for experimental and clinical applications.  相似文献   

18.
Mesenchymal stem cells (MSCs) have both multi-lineage differentiation potential and immunosuppressive properties, making them ideal candidates for regenerative medicine. However, their immunosuppressive properties potentially increase the risk of cancer progression and opportunistic infections. In this study, MSCs isolated from human umbilical cord blood (UCMSCs) and adult bone marrow (BMMSCs) were infected with human cytomegalovirus (HCMV). Cytopathic changes were observed 10 days post infection. PCR products amplified from genomic DNA and cDNA were used to confirm the HCMV infection of the UCMSCs and BMMSCs. Real-time PCR was conducted to quantify the expression of immunomodulatory molecules, including cytokines, chemokines, growth factors, adhesion molecules and cancer-related genes. Our results indicate high upregulation of the majority of these molecules, including many growth factors, tumor necrosis factor alpha, interleukin-8, interleukin-6 and interferon gamma. Adhesion molecules (VCAM-1, TCAM-1 and selectin-E) were downregulated in the infected UCMSCs and BMMSCs. Antibody chip array evaluation of cell culture media indicated that the growth factor secretion by UCMSCs and BMMSCs was greatly influenced (p < 0.001) by HCMV. The stimulation of MSCs with HCMV led to the activation of downstream signaling pathways, including pSTAT3 and Wnt2. Our results show that HCMV can significantly alter the functions of both UCMSCs and BMMSCs, although not in the same way or to the same extent. In both cases, there was an increase in the expression of proangiogenic factors in the microenvironment following HMCV infection. The discrepancy between the two cell types may be explained by their different developmental origin, although further analysis is necessary. Future studies should decipher the underlying mechanism by which HCMV controls MSCs, which may lead to the development of new therapeutic treatments.  相似文献   

19.
The umbilical cord represents the link between mother and fetus during pregnancy. This cord is usually discarded as a biological waste after the child’s birth; however, its importance as a “store house” of stem cells has been explored recently. We developed a method of simultaneous isolation of endothelial cells (ECs) from the vein and mesenchymal stem cells from umbilical cord Wharton’s jelly of the same cord. The isolation protocol has been simplified, modified, and improvised with respect to choice of enzyme and enzyme mixture, digestion time, cell yield, cell growth, and culture medium. Isolated human umbilical vascular ECs (hUVECs) were positive for von-Willibrand factor, a classical endothelial marker, and could form capillary-like structures when seeded on Matrigel, thus proving their functionality. The isolated human umbilical cord mesenchymal stem cells (hUCMSCs) were found positive for CD44, CD90, CD 73, and CD117 and were found negative for CD33, CD34, CD45, and CD105 surface markers; they were also positive for cytoskeleton markers of smooth muscle actin and vimentin. The hUCMSCs showed multilineage differentiation potential and differentiated into adipogenic, chondrogenic, osteogenic, and neuronal lineages under influence of lineage specific differentiation medium. Thus, isolating endothelial cells as well as mesenchymal cells from the same umbilical cord could lead to complete utilization of the available tissue for the tissue engineering and cell therapy.  相似文献   

20.
The proliferation of human bone marrow mesenchymal stem cells (MSCs) employing xeno-free materials not containing fetal calf serum (FCS) and porcine trypsin was investigated for the regenerative medicine of cartilage using MSCs. Four sequential subcultivations of MSCs using a medium containing 10% FCS and recombinant trypsin (TrypLESelect™) resulted in cell growth comparable to that with porcine trypsin. There was no apparent difference in the cell growth and morphology between two kinds of MSC stored in liquid nitrogen using 10% FCS plus DMSO or serum-free TC protector™. MSCs were isolated from human bone marrow cells, stored in liquid nitrogen, and sequentially subcultivated four times employing conventional materials that included FCS, porcine trypsin, and DMSO, or xeno-free materials that included serum-free medium (MesenCult-XF™), TC protector™ and TrypLESelect™. Cells in the culture using the xeno-free materials maintained typical fibroblast-like morphology and grew more rapidly than the cells in the culture using the conventional materials, while the cell surface markers of MSCs (CD90 and CD166) were well maintained in both cultures. Chondrogenic pellet cultures were carried out using these subcultivated cells and a medium containing TGFβ3 and IGF1. The pellet culture using cells grown with the xeno-free materials showed an apparently higher gene expression of aggrecan, a chondrocyte marker, than the pellet culture using cells grown with the conventional materials. Consequently, MSCs that are isolated, stored, and grown using the xeno-free materials including the serum-free medium (MesenCult-XF™), TC protector™, and recombinant trypsin (TrypLESelect™) might be applicable for regenerative medicine of cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号