首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl groups provide an important source of structural and dynamic information in NMR studies of proteins and their complexes. For this purpose sequence-specific assignments of methyl 1H and 13C resonances are required. In this paper we propose the use of 13C-detected 3D HN(CA)C and HMCMC experiments for assignment of methyl 1H and 13C resonances using a single selectively methyl protonated, perdeuterated and 13C/15N-labeled sample. The high resolution afforded in the 13C directly-detected dimension allows one to rapidly and unambiguously establish correlations between backbone HN strips from the 3D HN(CA)C spectrum and methyl group HmCm strips from the HMCMC spectrum by aligning all possible side-chain carbon chemical shifts and their multiplet splitting patterns. The applicability of these experiments for the assignment of methyl 1H and 13C resonances is demonstrated using the 18.6 kDa B domain of the Escherichia coli mannose transporter (IIBMannose).  相似文献   

2.
Protein-protein interactions are necessary for various cellular processes, and therefore, information related to protein-protein interactions and structural information of complexes is invaluable. To identify protein-protein interfaces using NMR, resonance assignments are generally necessary to analyze the data; however, they are time consuming to collect, especially for large proteins. In this paper, we present a rapid, effective, and unbiased approach for the identification of a protein-protein interface without resonance assignments. This approach requires only a single set of 2D titration experiments of a single protein sample, labeled with a unique combination of an (15)N-labeled amino acid and several amino acids (13)C-labeled on specific atoms. To rapidly obtain high resolution data, we applied a new pulse sequence for time-shared NMR measurements that allowed simultaneous detection of a ω(1)-TROSY-type backbone (1)H-(15)N and aromatic (1)H-(13)C shift correlations together with single quantum methyl (1)H-(13)C shift correlations. We developed a structure-based computational approach, that uses our experimental data to search the protein surfaces in an unbiased manner to identify the residues involved in the protein-protein interface. Finally, we demonstrated that the obtained information of the molecular interface could be directly leveraged to support protein-protein docking studies. Such rapid construction of a complex model provides valuable information and enables more efficient biochemical characterization of a protein-protein complex, for instance, as the first step in structure-guided drug development.  相似文献   

3.
Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of 13C and 1H chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their 13C chemical shifts with that of the neighboring, directly attached, 13C nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D 1H-TOCSY-HCCH and (c) (4,3)D 13C-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.  相似文献   

4.
Multiplet-filtered and gradient-selected heteronuclear zero-quantum coherence (gsHZQC) TROSY experiments are described for measuring (1)H-(13)C correlations for (13)CH(3) methyl groups in proteins. These experiments provide improved suppression of undesirable, broad outer components of the heteronuclear zero-quantum multiplet in medium-sized proteins, or in flexible sites of larger proteins, compared to previously described HZQC sequences (Tugarinov et al. in J Am Chem Soc 126:4921-4925, 2004; Ollerenshaw et al. in J Biomol NMR 33:25-41, 2005). Hahn-echo versions of the gsHZQC experiment also are described for measuring zero- and double-quantum transverse relaxation rate constants for identification of chemical exchange broadening. Application of the proposed pulse sequences to Escherichia coli ribonuclease HI, with a molecular mass of 18 kD, indicates that improved multiplet suppression is obtained without substantial loss of sensitivity.  相似文献   

5.
We present a time-shared 3D HSQC-NOESY experiment that enables one to simultaneously record 13C- and 15N-dispersed spectra in Ile, Leu and Val (ILV) methyl-labeled samples. This experiment is designed to delineate the two spectra which would otherwise overlap with one another when acquired together. These spectra display nOe correlations in the detected proton dimension, i.e. with maximum resolution. This is in contrast to NOESY-HSQC types of experiments that provide cross-peaks in the indirect dimension with low resolution due to limits in experimental time. The technique is particularly advantageous at high field where even longer experimental times would be required for comparable resolution in NOESY-HSQC experiments. The method is demonstrated at 900 MHz and at 750 MHz on 37 and 31 kDa proteins, respectively. The resolution and time saving provided in this experiment was crucial for solving the structures of these two proteins.  相似文献   

6.
The assignment of the 1H, 15N, 13CO, and 13C resonances of recombinant human interleukin-4 (IL-4), a protein of 133 residues and molecular mass of 15.4 kDa, is presented based on a series of 11 three-dimensional (3D) double- and triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N/13C-labeled IL-4 with an isotope incorporation of greater than 95% for the protein expressed in yeast. Five independent sequential connectivity pathways via one-, two-, and three-bond heteronuclear J couplings are exploited to obtain unambiguous sequential assignments. Specifically, CO(i)-N(i + 1),NH(i + 1) correlations are observed in the HNCO experiment, the C alpha H(i), C alpha (i)-N(i + 1) correlations in the HCA(CO)N experiment, the C alpha(i)-N(i + 1),NH(i + 1) correlations in the HNCA and HN(CO)CA experiments, the C alpha H(i)-N(i + 1),NH(i + 1) correlations in the H(CA)NH and HN(CO)HB experiments, and the C beta H(i)-N(i + 1),NH(i + 1) correlations in the HN(CO)HB experiments. The backbone intraresidue C alpha H(i)-15N(i)-NH(i) correlations are provided by the 15N-edited Hartmann-Hahn (HOHAHA) and H(CA)NH experiments, the C beta H(i)-15N(i)-NH(i) correlations by the 15N-edited HOHAHA and HNHB experiments, the 13C alpha(i)-15N(i)-NH(i) correlations by the HNCA experiment, and the C alpha H(i)-13C alpha(i)-13CO(i) correlations by the HCACO experiment. Aliphatic side-chain spin systems are assigned by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and total correlated (HCCH-TOCSY) spectroscopy. Because of the high resolution afforded by these experiments, as well as the availability of multiple sequential connectivity pathways, ambiguities associated with the limited chemical shift dispersion associated with helical proteins are readily resolved. Further, in the majority of cases (88%), four or more sequential correlations are observed between successive residues. Consequently, the interpretation of these experiments readily lends itself to semiautomated analysis which significantly simplifies and speeds up the assignment process. The assignments presented in this paper provide the essential basis for studies aimed at determining the high-resolution three-dimensional structure of IL-4 in solution.  相似文献   

7.
Reductive methylation of lysine residues in proteins offers a way to introduce 13C methyl groups into otherwise unlabeled molecules. The 13C methyl groups on lysines possess favorable relaxation properties that allow highly sensitive NMR signal detection. One of the major limitations in the use of reductive methylation in NMR is the signal overlap of 13C methyl groups in NMR spectra. Here we show that the uniform influence of the solvent on chemical shifts of exposed lysine methyl groups could be overcome by adjusting the pH of the buffering solution closer to the pKa of lysine side chains. Under these conditions, due to variable pKa values of individual lysine side chains in the protein of interest different levels of lysine protonation are observed. These differences are reflected in the chemical shift differences of methyl groups in reductively methylated lysines. We show that this approach is successful in four different proteins including Ca2+-bound Calmodulin, Lysozyme, Ca2+-bound Troponin C, and Glutathione S-Transferase. In all cases significant improvement in NMR spectral resolution of methyl signals in reductively methylated proteins was obtained. The increased spectral resolution helps with more precise characterization of protein structural rearrangements caused by ligand binding as shown by studying binding of Calmodulin antagonist trifluoperazine to Calmodulin. Thus, this approach may be used to increase resolution in NMR spectra of 13C methyl groups on lysine residues in reductively methylated proteins that enhances the accuracy of protein structural assessment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Precision in the determination of the 3D structures of proteins by NMR depends on obtaining an adequate number of NOE restraints. Ambiguity in the assignment of NOE cross peaks between aromatic and other protons is an impediment to high quality structure determination. Two pulse sequences, 3D Haro-NOESY-CH3NH and 3D Caro-NOESY-CH3NH, based on a modification of a technique for simultaneous detection of 13C-1H (of CH3) and 15N-1H correlations in one measurement, are proposed in the present work. These 3D experiments, which are optimized for resolution in the 13C and 15N dimensions, provide NOE information between aromatic protons and methyl or amide protons. CH2 moieties are filtered out and the CH groups in aromatic rings are selected, allowing their NOE cross peaks to be unambiguously assigned. Unambiguous NOEs connecting aromatic and methyl or amide protons will provide important restraints for protein structure calculations.  相似文献   

9.
We present strategies for chemical shift assignments of large proteins by magic-angle spinning solid-state NMR, using the 21-kDa disulfide-bond-forming enzyme DsbA as prototype. Previous studies have demonstrated that complete de novo assignments are possible for proteins up to  ∼ 17 kDa, and partial assignments have been performed for several larger proteins. Here we show that combinations of isotopic labeling strategies, high field correlation spectroscopy, and three-dimensional (3D) and four-dimensional (4D) backbone correlation experiments yield highly confident assignments for more than 90% of backbone resonances in DsbA. Samples were prepared as nanocrystalline precipitates by a dialysis procedure, resulting in heterogeneous linewidths below 0.2 ppm. Thus, high magnetic fields, selective decoupling pulse sequences, and sparse isotopic labeling all improved spectral resolution. Assignments by amino acid type were facilitated by particular combinations of pulse sequences and isotopic labeling; for example, transferred echo double resonance experiments enhanced sensitivity for Pro and Gly residues; [2-13C]glycerol labeling clarified Val, Ile, and Leu assignments; in-phase anti-phase correlation spectra enabled interpretation of otherwise crowded Glx/Asx side-chain regions; and 3D NCACX experiments on [2-13C]glycerol samples provided unique sets of aromatic (Phe, Tyr, and Trp) correlations. Together with high-sensitivity CANCOCA 4D experiments and CANCOCX 3D experiments, unambiguous backbone walks could be performed throughout the majority of the sequence. At 189 residues, DsbA represents the largest monomeric unit for which essentially complete solid-state NMR assignments have so far been achieved. These results will facilitate studies of nanocrystalline DsbA structure and dynamics and will enable analysis of its 41-kDa covalent complex with the membrane protein DsbB, for which we demonstrate a high-resolution two-dimensional 13C-13C spectrum.  相似文献   

10.
Human blood group A and B glycosyltransferases (GTA, GTB) are highly homologous glycosyltransferases. A number of high-resolution crystal structures is available showing that these enzymes convert from an open conformation into a catalytically active closed conformation upon substrate binding. However, the mechanism of glycosyltransfer is still under debate, and the precise nature as well as the time scales of conformational transitions are unknown. NMR offers a variety of experiments to shine more light on these unresolved questions. Therefore, in a first step we have assigned all methyl resonance signals in MILVA labeled samples of GTA and GTB, still a challenging task for 70 kDa homodimeric proteins. Assignments were obtained from methyl–methyl NOESY experiments, and from measurements of lanthanide-induced pseudocontact shifts (PCS) using high resolution crystal structures as templates. PCSs and chemical shift perturbations, induced by substrate analogue binding, suggest that the fully closed state is not adopted in the presence of lanthanide ions.  相似文献   

11.
Recently we have shown that HMQC spectra of protonated methyl groups in high molecular weight, highly deuterated proteins have large enhancements in sensitivity and resolution relative to HSQC-generated data sets. These enhancements derive from a TROSY effect in which complete cancellation of intra-methyl (1)H-(1)H and (1)H-(13)C dipolar interactions occurs for 50% of the signal in the case of HMQC, so long as the methyl is attached to a molecule tumbling in the macromolecular limit (Tugarinov, V., Hwang, P.M., Ollerenshaw, J.E., Kay, L.E. J. Am. Chem. Soc. (2003) 125, 10420-10428; Ollerenshaw, J.E., Tugarinov, V. and Kay, L.E. Magn. Reson. Chem. (2003) 41, 843-852. The first demonstration of this effect was made for isoleucine delta1 methyl groups in a highly deuterated 82 kDa protein, malate synthase G. As with (1)H-(15)N TROSY spectroscopy high levels of deuteration are critical for maximizing the TROSY effect. Here we show that excellent quality methyl TROSY spectra can be recorded on U-[(2)H] Iledelta1-[(13)CH(3)] Leu,Val-[(13)CH(3)/(12)CD(3)] protein samples, significantly extending the number of probes available for structural and dynamic studies of high molecular weight systems.  相似文献   

12.
A triple-resonance pulse scheme is described which records15N, NH correlations of residues that immediately follow amethyl-containing amino acid. The experiment makes use of a15N, 13C and fractionally deuterated proteinsample and selects for CH2D methyl types. The experiment isthus useful in the early stages of the sequential assignment process as wellas for the confirmation of backbone 15N, NH chemical shiftassignments at later stages of data analysis. A simple modification of thesequence also allows the measurement of methyl side-chain dynamics. This isparticularly useful for studying side-chain dynamic properties in partiallyunfolded and unfolded proteins where the resolution of aliphatic carbon andproton chemical shifts is limited compared to that of amide nitrogens.  相似文献   

13.
Relaxation in methyl groups is strongly influenced by cross-correlated interactions involving the methyl dipoles. One of the major interference effects results from intra-methyl (1)H-(13)C, (1)H-(1)H dipolar interactions, leading to significant differences in the relaxation of certain multiplet components that contribute to double- and zero-quantum (1)H-(13)C spectra. NMR experiments are presented for the measurement of this differential relaxation effect. It is shown that this difference in relaxation between double- and zero-quantum multiplet components can be used as a sensitive reporter of side chain dynamics and that accurate methyl axis order parameters can be measured in proteins that tumble with correlation times greater than approximately 5 ns.  相似文献   

14.
NMR studies of human integral membrane proteins provide unique opportunities to probe structure and dynamics at specific locations and on multiple timescales, often with significant implications for disease mechanism and drug development. Since membrane proteins such as G protein-coupled receptors (GPCRs) are highly dynamic and regulated by ligands or other perturbations, NMR methods are potentially well suited to answer basic functional questions (such as addressing the biophysical basis of ligand efficacy) as well as guiding applications (such as novel ligand design). However, such studies on eukaryotic membrane proteins have often been limited by the inability to incorporate optimal isotopic labels for NMR methods developed for large protein/lipid complexes, including methyl TROSY. We review the different expression systems for production of isotopically labeled membrane proteins and highlight the use of the yeast Pichia pastoris to achieve perdeuteration and 13C methyl probe incorporation within isoleucine sidechains. We further illustrate the use of this method for labeling of several biomedically significant GPCRs.  相似文献   

15.
Tools to study disordered systems with local structural order, such as proteins in solution, remain limited. Such understanding is essential for e.g. rational drug design. Correlated X-ray scattering (CXS) has recently attracted new interest as a way to leverage next-generation light sources to study such disordered matter. The CXS experiment measures angular correlations of the intensity caused by the scattering of X-rays from an ensemble of identical particles, with disordered orientation and position. Averaging over 15 496 snapshot images obtained by exposing a sample of silver nanoparticles in solution to a micro-focused synchrotron radiation beam, we report on experimental efforts to obtain CXS signal from an ensemble in three dimensions. A correlation function was measured at wide angles corresponding to atomic resolution that matches theoretical predictions. These preliminary results suggest that other CXS experiments on disordered ensembles—such as proteins in solution—may be feasible in the future.  相似文献   

16.
Mars - robust automatic backbone assignment of proteins   总被引:1,自引:0,他引:1  
MARS a program for robust automatic backbone assignment of (13)C/(15)N labeled proteins is presented. MARS does not require tight thresholds for establishing sequential connectivity or detailed adjustment of these thresholds and it can work with a wide variety of NMR experiments. Using only (13)C(alpha)/(13)C(beta) connectivity information, MARS allows automatic, error-free assignment of 96% of the 370-residue maltose-binding protein. MARS can successfully be used when data are missing for a substantial portion of residues or for proteins with very high chemical shift degeneracy such as partially or fully unfolded proteins. Other sources of information, such as residue specific information or known assignments from a homologues protein, can be included into the assignment process. MARS exports its result in SPARKY format. This allows visual validation and integration of automated and manual assignment.  相似文献   

17.
Summary A new method, which employs a sequence of heteronuclear-homonuclear-heteronuclear Hartmann-Hahn (HEHOHEHAHA) cross-polarization steps for obtaining through-bond H-C-C-H correlations in larger proteins (Mr > 15 kDa), is presented. The method has significantly higher sensitivity compared to INEPTHOHAHA-INEPT-based techniques. An additional feature of this experiment is that well-phaseable spectra may be obtained with a minimal (4-step) phase cycle and, consequently, experimental time can be utilized towards obtaining high resolution in indirect dimensions. Results from 2D and 3D HEHOHEHAHA experiments on T4-lysozyme are presented.  相似文献   

18.
A simple spectroscopic filtering technique is presented that may aid the assignment of 13C and 15N resonances of methyl-containing amino-acids in solid-state magic-angle spinning (MAS) NMR. A filtering block that selects methyl resonances is introduced in two-dimensional (2D) 13C-homonuclear and 15N–13C heteronuclear correlation experiments. The 2D 13C–13C correlation spectra are recorded with the methyl filter implemented prior to a 13C–13C mixing step. It is shown that these methyl-filtered 13C-homonuclear correlation spectra are instrumental in the assignment of Cδ resonances of leucines by suppression of Cγ–Cδ cross peaks. Further, a methyl filter is implemented prior to a 15N–13C transferred-echo double resonance (TEDOR) exchange scheme to obtain 2D 15N–13C heteronuclear correlation spectra. These experiments provide correlations between methyl groups and backbone amides. Some of the observed sequential 15N–13C correlations form the basis for initial sequence-specific assignments of backbone signals of the outer-membrane protein G.  相似文献   

19.
Molecular aspects of heterosis in plants   总被引:23,自引:0,他引:23  
  相似文献   

20.
B Bendiak 《Carbohydrate research》1999,315(3-4):206-221
Peracetylation of free hydroxyl groups in model saccharides with [13C-carbonyl]acetic anhydride resulted in additional splittings of sugar ring proton signals in NMR spectra, due to 3-bond J couplings between each acetyl carbonyl carbon and a sugar ring proton at that position. Quantification of 144 of these 3-bond coupling constants in different saccharide structures showed a range between 2.5 and 4.7 Hz, whereas all possible 4-bond couplings between sugar ring protons and acetyl carbonyl carbons were within linewidth (< 0.5 Hz). Therefore, further splitting of sugar ring proton signals in the range of 2.5-4.7 Hz upon acetylation with a [13C-carbonyl]acetyl group identifies that position as (formerly) having a free hydroxyl group. This performs the same basic function as permethylation analysis, but does not require hydrolysis of glycosidic linkages. Additionally, proton-detected 2D heteronuclear multiple bond correlation (HMBC) experiments or proton-detected heteronuclear correlation spectroscopy (hetCOSY) enabled ring proton-carbonyl-13C 3-bond J connectivities to be correlated with high sensitivity. Modified NMR pulse sequences are reported that include frequency selective decoupling schemes to enable coupling constants to be determined from 2D data. The tailored pulse sequences resulted in higher spectral resolution and sensitivity for [13C-carbonyl]-ring proton correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号