首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Inositol1,4,5-trisphosphate (IP3) receptors (IP3R) andryanodine receptors (RyR) were localized in cultured rodent muscle fractions by binding of radiolabeled ligands (IP3 andryanodine), and IP3R were visualized in situ byfluorescence immunocytological techniques. Also explored was the effectof K+ depolarization on IP3 mass andCa2+ transients studied using a radio-receptor displacementassay and fluorescence imaging of intracellular fluo 3. RyR werelocated in a microsomal fraction; IP3R were preferentiallyfound in the nuclear fraction. Fluorescence associated withanti-IP3R antibody was found in the region of the nuclearenvelope and in a striated pattern in the sarcoplasmic areas. Anincrease in external K+ affected membrane potential andproduced an IP3 transient. Rat myotubes displayed afast-propagating Ca2+ signal, corresponding to theexcitation-contraction coupling transient and a much slowerCa2+ wave. Both signals were triggered by high externalK+ and were independent of external Ca2+. Slowwaves were associated with cell nuclei and were propagated leaving"glowing" nuclei behind. Different roles are proposed for atleast two types of Ca2+ release channels, each mediating anintracellular signal in cultured skeletal muscle.

  相似文献   

2.
The amount of Ca(2+) taken up in the mitochondrial matrix is a crucial determinant of cell fate; it plays a decisive role in the choice of the cell between life and death. The Ca(2+) ions mainly originate from the inositol 1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores of the endoplasmic reticulum (ER). The uptake of these Ca(2+) ions in the mitochondria depends on the functional properties and the subcellular localization of the IP(3) receptor (IP(3)R) in discrete domains near the mitochondria. To allow for an efficient transfer of the Ca(2+) ions from the ER to the mitochondria, structural interactions between IP(3)Rs and mitochondria are needed. This review will focus on the key proteins involved in these interactions, how they are regulated, and what are their physiological roles in apoptosis, necrosis and autophagy. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

3.
4.
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.  相似文献   

5.
IP(3) receptors: the search for structure   总被引:4,自引:0,他引:4  
Inositol (1,4,5)-trisphosphate receptors (IP(3)R) are intracellular Ca(2+) channels that are regulated by Ca(2+) and IP(3), and are modulated by many additional signals. They thereby allow both receptors that stimulate IP(3) formation and Ca(2+) to control release of Ca(2+) from intracellular stores. IP(3)Rs share many features with their close relatives, ryanodine receptors; each provides insight into the structure and function of the other. The structural basis of IP(3)R behaviour is beginning to emerge from intermediate-resolution structures of the complete IP(3)R, a 2.2-A structure of the IP(3)-binding core and comparisons with the pore structures of other tetrameric cation channels. The binding of IP(3) to a site towards the N-terminal of each IP(3)R subunit promotes binding of Ca(2+). This destabilizes an inhibitory interaction between N-terminal residues and a C-terminal 'gatekeeper' sequence, enabling the pore to open.  相似文献   

6.
Molecular and physiological studies of cells implicate interactions between the cytoskeleton and the intracellular calcium signalling machinery as an important mechanism for the regulation of calcium signalling. However, little is known about the functions of such mechanisms in animals. A key component of the calcium signalling network is the intracellular release of calcium in response to the production of the second messenger inositol 1,4,5-trisphosphate (IP(3)), mediated by the IP(3) receptor (IP(3)R). We show that C. elegans IP(3)Rs, encoded by the gene itr-1, interact directly with myosin II. The interactions between two myosin proteins, UNC-54 and MYO-1, and ITR-1 were identified in a yeast two-hybrid screen and subsequently confirmed in vivo and in vitro. We defined the interaction sites on both the IP(3)R and MYO-1. To test the effect of disrupting the interaction in vivo we overexpressed interacting fragments of both proteins in C. elegans. This decreased the animal's ability to upregulate pharyngeal pumping in response to food. This is a known IP(3)-mediated process [15]. Other IP(3)-mediated processes, e.g., defecation, were unaffected. Thus it appears that interactions between IP(3)Rs and myosin are required for maintaining the specificity of IP(3) signalling in C. elegans and probably more generally.  相似文献   

7.
Inositol 1,4,5-trisphosphate receptor (IP(3)-receptor) is a calcium channel, transporting calcium from intracellular stores to the cytoplasm. In kidney, IP(3)-receptors are involved in the signal transduction of various hormones. In our work we studied the effect of immobilization stress on the IP(3)-receptor's protein content in renal cortex and the medulla of normotensive and hypertensive rats. We detected both mRNA and type 1 IP(3)-receptor protein in medulla, but not in renal cortex. We found that this receptor was approximately twice as abundant in normotensive as in genetically hypertensive rat kidney. Immobilization stress decreased the amount of type 1 IP(3)-receptor in the renal medulla of normotensive rats approximately five times, while no effect due to single and/or repeated stress was observed in the renal medulla of spontaneously hypertensive rats. The results indicate that expression of type 1 IP(3)-receptor in renal medulla is modulated by hypertension and immobilization stress.  相似文献   

8.
9.
The versatility of Ca2+ as an intracellular messenger stems largely from the impressive, but complex, spatiotemporal organization of the Ca2+ signals. For example, the latter when initiated by IP3 (inositol 1,4,5-trisphosphate) in many cells manifest hierarchical recruitment of elementary Ca2+ release events ('blips' and then 'puffs') en route to global regenerative Ca2+ waves as the cellular IP3 concentration rises. The spacing of IP3Rs (IP3 receptors) and their regulation by Ca2+ are key determinants of these spatially organized Ca2+ signals, but neither is adequately understood. IP3Rs have been proposed to be pre-assembled into clusters, but their composition, geometry and whether clustering affects IP3R behaviour are unknown. Using patch-clamp recording from the outer nuclear envelope of DT40 cells expressing rat IP3R1 or IP3R3, we have recently shown that low concentrations of IP3 cause IP3Rs to aggregate rapidly and reversibly into small clusters of approximately four IP3Rs. At resting cytosolic Ca2+ concentrations, clustered IP3Rs open independently, but with lower open probability, shorter open duration and lesser IP3-sensitivity than lone IP3Rs. This inhibitory influence of clustering on IP3R is reversed when the [Ca2+]i (cytosolic free Ca2+ concentration) increases. The gating of clustered IP3Rs exposed to increased [Ca2+]i is coupled: they are more likely to open and close together, and their simultaneous openings are prolonged. Dynamic clustering of IP3Rs by IP3 thus exposes them to local Ca2+ rises and increases their propensity for a CICR (Ca2+-induced Ca2+ rise), thereby facilitating hierarchical recruitment of the elementary events that underlie all IP3-evoked Ca2+ signals.  相似文献   

10.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular channel proteins that mediate calcium (Ca2+) release from the endoplasmic reticulum, and they are involved in many biological processes (e.g. fertilization, secretion, and synaptic plasticity). Recent reports show that IP3R activity is strictly regulated by several interacting molecules (e.g. IP3R binding protein released with inositol 1,4,5-trisphosphate, huntingtin, presenilin, DANGER, and cytochrome c), and perturbation of this regulation causes intracellular Ca2+ elevation leading to several diseases (e.g. Huntington disease and Alzheimer disease). In this study, we identified protein kinase C substrate 80K-H (80K-H) to be a novel molecule interacting with the COOH-terminal tail of IP3Rs by yeast two-hybrid screening. 80K-H directly interacted with IP3R type 1 (IP3R1) in vitro and co-immunoprecipitated with IP3R1 in cell lysates. Immunocytochemical and immunohistochemical staining revealed that 80K-H colocalized with IP3R1 in COS-7 cells and in hippocampal neurons. We also showed that the purified recombinant 80K-H protein directly enhanced IP3-induced Ca2+ release activity by a Ca2+ release assay using mouse cerebellar microsomes. Furthermore 80K-H was found to regulate ATP-induced Ca2+ release in living cells. Thus, our findings suggest that 80K-H is a novel regulator of IP3R activity, and it may contribute to neuronal functions.  相似文献   

11.
The distances between the inositol 1,4,5-trisphosphate (IP(3))-binding sites of tetrameric IP(3) receptors were probed using dimers of IP(3) linked by poly(ethylene glycol) (PEG) molecules of differing lengths (1-8 nm). Each of the dimers potently stimulated (45)Ca(2+) release from permeabilized cells expressing predominantly type 1 (SH-SY5Y cells) or type 2 (hepatocytes) IP(3) receptors. The shortest dimers, with PEG linkers of an effective length of 1.5 nm or less, were the most potent, being 3-4-fold more potent than IP(3). In radioligand binding experiments using cerebellar membranes, the shortest dimers bound with highest affinity, although the longest dimer (8 nm) also bound with almost 4-fold greater affinity than IP(3). The affinity of monomeric IP(3) with only the PEG attached was 2-fold weaker than IP(3), confirming that the increased affinity of the dimers requires the presence of both IP(3) motifs. The increased affinity of the long dimer probably results from the linked IP(3) molecules binding to sites on different receptors, because the dimer bound with greater affinity than IP(3) to cerebellar membranes, where receptors are densely packed, but with the same affinity as IP(3) to purified receptors. IP(3) and the IP(3) dimers, irrespective of their length, bound with similar affinity to a monomeric IP(3)-binding domain of the type 1 IP(3) receptor expressed in bacteria. Short dimers therefore bind with increased affinity only when the receptor is tetrameric. We conclude that the four IP(3)-binding sites of an IP(3) receptor may be separated by as little as 1.5 nm and are therefore likely to be placed centrally in this large (25 x 25 nm) structure, consistent with previous work indicating a close association between the central pore and the IP(3)-binding sites of the IP(3) receptor.  相似文献   

12.
Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals   总被引:12,自引:0,他引:12  
Intracellular calcium signals mediated by IP(3)and ryanodine receptors (IP(3)R/RyR) play a central role in cell survival, but emerging evidence suggests that IP(3)R/RyR are also important in apoptotic cell death. Switch from the life program to the death program may involve coincident detection of proapoptotic stimuli and calcium signals or changes in the spatiotemporal pattern of the calcium signal or changes at the level of effectors activated by the calcium signal (e.g. calpain, calcineurin). The fate of the cell is often determined in the mitochondria, where calcium spikes may support cell survival through stimulation of ATP production or initiate apoptosis v ia opening of the permeability transition pore and release of apoptotic factors such as cytochrome c. The functional importance of these mitochondrial calcium signalling pathways has been underscored by the elucidation of a highly effective, local Ca(2+)coupling between IP(3)R/RyR and mitochondrial Ca(2+)uptake sites. This article will focus on the IP(3)R/RyR-dependent pathways to apoptosis, particularly on the mitochondrial phase of the death cascade.  相似文献   

13.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) serve to discharge Ca2+ from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of Ca2+-dependent apoptosis. In particular we focus on the regulation of IP3Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also address the evidence that some of the effects of IP3Rs in apoptosis may be independent of their ion-channel function. The role of IP3Rs in delivering Ca2+ to the mitochondria is discussed from the perspective of the factors determining inter-organellar dynamics and the spatial proximity of mitochondria and ER membranes.  相似文献   

14.
Type 3 Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R3s) have been identified as anti-oncogenic channels by propelling pro-apoptotic Ca2+ signals to mitochondria. Yet, recent studies (Rezuchova et al, Cell Death Dis, 2019; Ueasilamongkol et al, Hepathology, 2019; Guerra et al, Gut, 2019) revealed that IP3R3 upregulation drives oncogenesis via ER-mitochondrial Ca2+ crosstalk, adding complexity to IP3R3’s role in cancer.  相似文献   

15.
The Molecular, structural and functional characteristics of the intracellular Ca2+ release channel activated by inositol 1,4,5-trisphosphate (IP3), also named IP3 receptor (IP3R), are described here. We also discuss the differences in primary structure, expression and modulation of the receptor subtypes and their physiological roles. The similarity and differences between the IP3R and the other intracellular Ca2+ channel, the ryanodine receptor, are briefly presented.  相似文献   

16.
Inositol 1,4,5-trisphosphate (IP(3)) receptor is a Ca(2+) release channel localized on the endoplasmic reticulum (ER) and plays an important role in neuronal function. IP(3) receptor was discovered as a developmentally regulated protein missing in the cerebellar mutant mice. Recent studies indicate that IP(3)Rs are involved in early development and neuronal plasticity. IP(3) works to release IRBIT from the IP(3) binding core in addition to release Ca(2+). IRBIT binds to and activates Na, Bicarbonate cotransporter. Electron microscopic study show the IP(3) receptor has allosteric property to change its form from square to windmill in the presence of Ca(2+). IP(3)R associates with ERp44, a redox sensor, Homer, other proteins and is transported as vesicular ER on microtubules. All these data suggests IP(3) receptor/CA(2+) channel works as a signaling center inside cells.  相似文献   

17.
Conventionally, myo-D-inositol 1, 4,5-trisphosphate (IP3) is thought to exert its second messenger effects through the gating of IP3R Ca2+ release channels, located in Ca2+-storage organelles like the endoplasmic reticulum. However, there is considerable indirect evidence to support the concept that IP3 might interact with other, non-IP3R proteins within cells. To explore this possibility further, the Protein Data Bank was searched using the term “IP3”. This resulted in the retrieval of 203 protein structures, the majority of which were members of the IP3R/ryanodine receptor superfamily of channels. Only 49 of these structures were complexed with IP3. These were inspected for their ability to interact with the carbon-1 phosphate of IP3, since this is the least accessible phosphate group of its precursor, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This reduced the number of structures retrieved to 35, of which 9 were IP3Rs. The remaining 26 structures represent a diverse range of proteins, including inositol-lipid metabolizing enzymes, signal transducers, PH domain containing proteins, cytoskeletal anchor proteins, the TRPV4 ion channel, a retroviral Gag protein and fibroblast growth factor 2. Such proteins may impact on IP3 signalling and its effects on cell-biology. This represents an area open for exploration in the field of IP3 signalling.  相似文献   

18.
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.  相似文献   

19.
The present study was designed to examine whether changes in Ca(2+) release by inositol-1,4,5-trisphosphate (IP(3)) in 8-, 15-, and 30-day-old rat skeletal muscles could be associated with the expression of IP(3) receptors. Experiments were conducted in slow-twitch muscle in which both IP(3)-induced Ca(2+) release and IP(3)-receptor (IP(3)R) expression have been shown to be larger than in fast-twitch muscle. In saponin-skinned fibers, IP(3) induced transient contractile responses in which the amplitude was dependent on the Ca(2+)-loading period with the maximal IP(3) contracture being at 20 min of loading. The IP(3) tension decreased during postnatal development, was partially inhibited by ryanodine (100 microM), and was blocked by heparin (20-400 microg/ml). Amplification of the DNA sequence encoding for IP(3)R isoforms (using the RT-PCR technique) showed that in slow-twitch muscle, the type 2 isoform is mainly expressed, and its level decreases during postnatal development in parallel with changes in IP(3) responses in immature fibers. IP(3)-induced Ca(2+) release would then have greater participation in excitation-contraction coupling in developing fibers than in mature muscle.  相似文献   

20.
Functional assays of inositol 1,4,5-trisphosphate receptors (IP3R) currently use 45Ca2+ release methods, fluorescent Ca2+ indicators within either the ER or cytosol, or electrophysiological analyses of IP3R in the nuclear envelope or artificial bilayers. None of the methods is presently amenable to the rapid, high-throughput quantitative analyses of IP3R function needed to address the structural determinants of IP3R behavior. We use a low-affinity Ca2+ indicator (Mag-fluo-4) to measure free [Ca2+] within the ER of permeabilized DT40 cells expressing only rat type 1 IP(3)R, and establish that the indicator is capable of reliably reporting the Ca(2+) release evoked by IP3. A 96-well fluorescence plate reader equipped for automated fluid additions (FlexStation, Molecular Devices) is used to monitor IP3-evoked Ca2+ release. The method allows quick and economical functional assays of recombinant IP3R in small volumes (< or = 100 microl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号