首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Depolymerization of lignin biomass to its value-added chemicals and fuels is pivotal for achieving the goals for sustainable society, and therefore has acquired key interest among the researchers worldwide. A number of distinct approaches have evolved in literature for the deconstruction of lignin framework to its mixture of complex constituents in recent decades. Among the existing practices, special attention has been devoted for robust site selective chemical transformation in the complex structural frameworks of lignin. Despite the initial challenges over a period of time, oxidation and oxidative cleavage process of aromatic building blocks of lignin biomass toward the fine chemical synthesis and fuel generation has improved substantially. The development has improved in terms of cost effectiveness, milder reaction conditions, and purity of compound individuals. These aforementioned oxidative protocols mainly involve the breaking of C-C and C-O bonds of complex lignin frameworks. More precisely in the line with environmentally friendly greener approach, the catalytic oxidation/oxidative cleavage reactions have received wide spread interest for their mild and selective nature toward the lignin depolymerization. This mini-review aims to provide an overview of recent developments in the field of oxidative depolymerization of lignin under greener and environmentally benign conditions. Also, these oxidation protocols have been discussed in terms of scalability and recyclability as catalysts for different fields of applications.  相似文献   

2.
In the future, biomass will continue to emerge as a viable source of chemicals. The development of new industries that utilize bio-renewables provides opportunities for innovation. For example, bio- and chemo-catalysts can be combined in 'one pot' to prepare chemicals of commercial value. This has been demonstrated using isolated enzymes and whole cells for a variety of chemical transformations. The one-pot approach has been successfully adopted to convert chemicals derived from biomass, and, in our opinion, it has an important role to play in the design of a more sustainable chemical industry. To implement new one-pot bio- and chemo-catalytic processes, issues of incompatibility must be overcome; the strategies for which are discussed in this opinion article.  相似文献   

3.
This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.  相似文献   

4.
Low-molecular weight heparins (LMWHs), as compared with unfractionated heparin (UFH), present superior bioavailability, much longer plasma half-life, and lower incidence of side effects. For these reasons, over the past two decades LMWHs have become the drugs of choice for the treatment of deep venous thrombosis, pulmonary embolism, arterial thrombosis, and unstable angina. Furthermore, their use in acute ischemic stroke is currently under study. LMWHs are obtained by UFH depolymerization, which can be performed using various methods, including nitrous acid depolymerization, cleavage by beta-elimination of benzyl ester, enzymatic depolymerization, and peroxyl radical-dependent depolymerization. This article addresses the chemical depolymerization, obtained by free radical attack (mainly hydroxyl radical), of heparin. The electron spin resonance (ESR) spectroscopy, coupled to the spin trapping technique, was employed to study this reaction. Free radical-mediated heparin depolymerization was performed under different chemical conditions. The final products of the reactions were purified and classified on the basis of their molecular weight and other characteristics. The level of heparin fragmentation was different depending on the type of depolymerization reaction used. Moreover, the level of reproducibility and the resulting radical species were different for every type of reaction performed.  相似文献   

5.
Biorefineries, which are using mostly unused side streams of other existing processes like bark or lignin, have a huge potential to open new resources, for example, chemicals. But with new resources new challenges will be met along the way. These challenges must be addressed and discussed to build a solid and far‐sighted process. This work focuses on the formation of monocyclic compounds like catechol as a valuable product during the hydrothermal liquefaction of beech wood bark as well as Kraft lignin from pine wood like Indulin AT. The focus is to get a better knowledge of the behavior of bark during hydrothermal liquefaction for depolymerization aiming at the production of aromatic building blocks for chemicals. Therefore, the influence, for example, of temperature and reaction time, the chemical reaction pathways, and the therefore necessary analytics need to be understood. Several limitations and challenges of common analytical methods are discussed and compared for bark and Kraft lignin, which is relatively well investigated and can act as a reference material to build a common ground and make it possible to build standards for all bioeconomic processes. Hydrothermal conditions increase the yield and selectivity toward bifunctional molecules like catechol. With rising temperatures and longer retention times, the catechol mass yields get lower. At temperatures above 350°C, nearly no catechol could be found any more. Different types of wood deliver different lignin compositions in terms of the monomeric units. However, it can be observed that different lignins show the same trends in regard to the catechol yield concerning temperatures and reaction time dependence, but overall a different product spectrum.  相似文献   

6.
Activation of fibres by radical formation is the first step when aiming at oxidative coupling of new functional groups on the fibre bound lignin. In this work, factors affecting the amount of phenoxy radicals created to unbleached TMP, CTMP, softwood kraft and hardwood kraft pulp fibres in the laccase catalysed oxidation were determined by EPR. Laccase was able to catalyse the oxidation of all the pulps studied. The reactivity of the pulp was found to be affected by both the physical accessibility of lignin in the fibres and the chemistry of the surface lignin accessible to laccase. Laccase dosage, use of extra oxygen in the laccase catalysed radicalization reaction, treatment time and also the amount and type of low-molecular weight compounds (LMWC) present in the pulp were all found to contribute to the radical content of pulp fibres measured after the enzymatic reaction. It could not been excluded that two types of reactions take place during the radical formation in fibres. Within the fibre matrix there may be both fibre material bound and soluble lignin fragments differing with respect to accessibility, molecular weight or chemical structure which can be radicalized at various rates, and the formed radicals may also undergo cross-coupling reactions reducing the amount of the total radicals.  相似文献   

7.
Steam explosion is an important process for the fractionation of biomass components. In order to understand the behaviour of lignin under the conditions encountered in the steam explosion process, as well as in other types of steam treatment, aspen wood and isolated lignin from aspen were subjected to steam treatment under various conditions. The lignin portion was analyzed using NMR and size exclusion chromatography as major analytical techniques. Thereby, the competition between lignin depolymerization and repolymerization was revealed and the conditions required for these two types of reaction identified. Addition of a reactive phenol, 2-naphthol, was shown to inhibit the repolymerization reaction strongly, resulting in a highly improved delignification by subsequent solvent extraction and an extracted lignin of uniform structure.  相似文献   

8.
Understanding the mechanism for the catalyzed cleavage of the β–O–4 ether linkage in lignin is crucial to developing efficient strategies for depolymerizing lignin. In this work, veratrylglycerol-β-guaiacyl ether (VG) was used as a lignin model compound in a theoretical investigation of the mechanism for the cleavage of the β–O–4 bond as catalyzed by the acidic ionic liquid (IL) 1-H-3-methylimidazolium chloride ([HMIM]Cl). The reaction was found to involve two processes—dehydration and hydrolysis—in which the cation functions as a Brønsted acid (donating a proton) and the anion acts as a nucleophile (promoting dehydration) or interacts with the substrate through hydrogen bonding, stabilizing the intermediate. These roles of the anion and cation of [HMIM]Cl explain why the [HMIM]Cl medium catalyzes the depolymerization of lignin. In addition, calculations predict that adding formaldehyde during the depolymerization of VG prevents the condensation of VG without significantly altering the mechanism of depolymerization, thus suggesting a method for potentially improving the efficiency of lignin depolymerization.  相似文献   

9.
木质素生物合成及其基因工程研究进展   总被引:29,自引:0,他引:29  
木质素是维管植物的一种主要组成成分,是植物适应陆地环境的重要特征之一.然而,它的存在严重影响植物材料在造纸工业与畜牧业生产中的应用,因此其生物合成调控的研究引起人们极大关注.随着各种分析技术和手段的提高,该领域研究取得了突破性的进展.该文重点阐述这些新进展,同时较系统地介绍利用基因工程技术调控木质素生物合成的研究成果,并提出一些关于更有效地利用生物技术手段改良造纸资源植物品质的建议.  相似文献   

10.
The Sonogashira alkynylation of acid chlorides can be efficiently conducted in less than an hour by performing the reaction in tetrahydrofuran as a solvent and in the presence of one stoichiometrically necessary equivalent of triethylamine as a base. This approach also opens new avenues for consecutive one-pot multicomponent reactions. As an example, the one-pot three-component pyrimidine synthesis illustrates the versatility of this modified Sonogashira protocol as an entry to diversity-oriented heterocycle synthesis in a one-pot fashion. The protocol can be completed within a few hours.  相似文献   

11.
《Free radical research》2013,47(4-5):265-280
Complementary hydroxylation assays and stopped-flow e.s.r. techniques have been employed in the investigation of the effect of various iron chelators (of chemical, biological and clinical importance) on hydroxyl-radical generation via the Haber-Weiss cycle and the ascorbate-driven Fenton reaction.

Chelators have been identified which selectively promote or inhibit various reactions involved in hydroxyl-radical generation (for example, NTA and EDTA promote all the reactions of both the Haber-Weiss cycle and the ascorbate-driven Fenton reaction, whereas DTPA and phytate inhibit the recycling of iron in these reactions). The biological chelators succinate and citrate are shown to be relatively poor catalysts of the Haber-Weiss cycle, whereas they are found to be effective catalysts of ·OH generation in the ascorbate-driven Fenton reaction.

It is also suggested that continuous redox-cycling reactions between iron, oxygen and ascorbate may represent an important mechanism of cell death in biological systems.  相似文献   

12.
Optically pure d-amino acids are industrially manufactured by biotransformations of cheap starting materials produced by chemical synthesis or fermentation in combination with the development of enzyme catalysts suitable for the starting materials. dl-Alaninamide, an intermediate of the chemical synthesis of dl-alanine, was efficiently converted to d-alanine by stereoselective hydrolysis with a d-isomer specific amidohydrolase produced by Arthrobacter sp. NJ-26. The total utilization system of dl-alaninamide for the production of optically pure d- and l-alanine was constructed by stereospecific amidohydrolases. On the other hand, d-amino acids were also produced from corresponding l-isomers, which are efficiently manufactured by fermentation. d-Glutamic acid was produced from l-glutamic acid. l-Glutamate was converted to the dl-form by the recombinant glutamate racemase of Lactobacillus brevis ATCC8287. Then l-glutamate in a racemic mixture was selectively decarboxylated to γ-aminobutyrate by the l-glutamate decarboxylase of E. coli ATCC11246. As a result of successive enzymatic reactions, d-glutamate was efficiently produced from l-glutamate by a one-pot reaction. d-Proline was produced by the same strategy from l-proline using the recombinant proline racemase of Clostridium sticklandii ATCC12262. In this case, l-proline was degraded by Candida sp. PRD-234. The strategy from l-amino acids to d-amino acids could be applicable to the manufacture of many d-amino acids.  相似文献   

13.
Complementary hydroxylation assays and stopped-flow e.s.r. techniques have been employed in the investigation of the effect of various iron chelators (of chemical, biological and clinical importance) on hydroxyl-radical generation via the Haber-Weiss cycle and the ascorbate-driven Fenton reaction.

Chelators have been identified which selectively promote or inhibit various reactions involved in hydroxyl-radical generation (for example, NTA and EDTA promote all the reactions of both the Haber-Weiss cycle and the ascorbate-driven Fenton reaction, whereas DTPA and phytate inhibit the recycling of iron in these reactions). The biological chelators succinate and citrate are shown to be relatively poor catalysts of the Haber-Weiss cycle, whereas they are found to be effective catalysts of ·OH generation in the ascorbate-driven Fenton reaction.

It is also suggested that continuous redox-cycling reactions between iron, oxygen and ascorbate may represent an important mechanism of cell death in biological systems.  相似文献   

14.
Use of laccase in pulp and paper industry   总被引:1,自引:0,他引:1  
Laccase, through its versatile mode of action, has the potential to revolutionize the pulping and paper making industry. It not only plays a role in the delignification and brightening of the pulp but has also been described for the removal of the lipophilic extractives responsible for pitch deposition from both wood and nonwood paper pulps. Laccases are capable of improving physical, chemical, as well as mechanical properties of pulp either by forming reactive radicals with lignin or by functionalizing lignocellulosic fibers. Laccases can also target the colored and toxic compounds released as effluents from various industries and render them nontoxic through its polymerization and depolymerization reactions. This article reviews the use of both fungal and bacterial laccases in improving pulp properties and bioremediation of pulp and paper mill effluents.  相似文献   

15.
木质纤维素生物质是地球上最丰富的可再生生物资源。随着化石能源的消耗及环境的污染,以取代石化燃料为目标的由生物质向生物燃料的转化受到了广泛的关注。木质纤维素有很强的天然抗降解屏障,需先通过物理、化学及微生物等手段进行预处理,进而以更低的成本和更高的效率转化为生物燃料及其他高附加值产品。本文在总结酸碱等传统预处理方法优缺点的基础上,综述了各种组合预处理对这些传统预处理方法的改进,以及γ-戊内酯预处理、低共熔溶剂预处理、微生物联合体生态位预处理这些新型预处理技术的研究进展,总结了木质素高值化过程中木质素的保护、解聚、改性的新方法,指出了预处理方法在工业生产中的应用及不足,以期为木质纤维素生物质转化的研究提供参考。  相似文献   

16.
The transformations of lignin that occur during its biodegradation are complex and incompletely understood. Certain fungi of the white-rot group, and possibly other fungi and bacteria, completely decompose lignin to carbon dioxide and water. Other fungi and bacteria apparently degrade lignin incompletely. Differences in lignin-degrading abilities observed for different organisms may result from differences in the completeness of their ligninolytic enzyme systems. Not all lignin components may be attacked by a particular organism. Alternatively, different organisms may differ in their basic mechanisms of attack on lignin. The basic pathways of lignin degradation have been elucidated only for certain representatives of the white-and brown-rot fungi. Although it is known that each of the principal structural components of lignin is attacked by other fungi and bacteria, the biochemistry of that attack has not been elucidated. Work with low molecular weight lignin models has provided only limited information on possible pathways of lignin degradation by microorganisms. There is little evidence to suggest a correlation between abilities to degrade single-ring aromatic or lignin model compounds and the ability to degrade polymeric lignin. More evidence has come from analysis of spent culture media for lignin breakdown products and from comparative chemical analyses of sound lignins versus decayed lignin residues. Accumulated evidence with the most thoroughly studied white-rot fungi suggests that with these fungi lignin degradation proceeds by way of extracellular mixed-function oxygenases and dioxygenases, which catalyse demethylations, hydroxylations and ring-fission reactions within a largely intact polymer, concomitant with some release of low molecular weight lignin fragments. There are also apparent relationships between lignin, carbohydrate and nitrogen metabolism for some organisms, but the relationships may vary from one organism to another. Although research is now mostly at a basic level, industrial applications may result from lignin degradation research. Considerable potential exists for the development of bioconversions which might produce low molecular weight chemicals from waste lignins, and thereby reduce our dependence on petroleum as a source of these chemicals. Alternatively, such bioconversions might produce chemically altered forms of polymeric lignin that may be valuable industrially.  相似文献   

17.
An effluent containing soluble lignin fragments was treated with potato-polyphenoloxidases (PPO) or horseradish peroxidase/hydrogen peroxide system (HRP/H(2)O(2)). In both cases the reaction was evidenced by the formation of a brown precipitate that was a consequence of the polymerization of lignin fragments. The effect of reaction time, pH, and amount of soluble lignin per unit of enzyme activity on the insolubilization yield was evaluated for PPO-initiated reactions. For HRP-initiated reactions, the amount of H(2)O(2) per unit of enzyme activity was also evaluated. Mathematical models were calculated to predict the insolubilization yield as a function of the significant variables. Based on these models, the insolubilization reaction was optimized and reached maximal values of ca. 50% in both reaction systems. Higher insolubilization yields were not achieved. Chemical characterization of the soluble lignin fragments indicated that the insolubilization yield could not be improved, because the lignin fragments had limited amounts of free phenolic substructures available for the initial steps of the polymerization reaction.  相似文献   

18.
Some enzymes can be considered as a catalyst having a nanosized inorganic core in a protein matrix. In some cases, the metal oxide or sulfide clusters, which can be considered as cofactors in enzymes, may be recruited for use in other related reactions in artificial photosynthetic systems. In other words, one approach to design efficient and environmentally friendly catalysts in artificial photosynthetic systems for the purpose of utilizing sunlight to generate high energy intermediates or useful material is to select and utilize inorganic cores of enzymes. For example, one of the most important goals in developing artificial photosynthesis is hydrogen production. However, first, it is necessary to find a “super catalyst” for water oxidation, which is the most challenging half reaction of water splitting. There is an efficient system for water oxidation in cyanobacteria, algae, and plants. Published data on the Mn–Ca cluster have provided details on the mechanism and structure of the water oxidizing complex as a Mn–Ca nanosized inorganic core in photosystem II. Progress has been made in introducing Mn–Ca oxides as efficient catalysts for water oxidation in artificial photosynthetic systems. Here, in the interest of designing efficient catalysts for other important reactions in artificial photosynthesis, a few examples of our knowledge of inorganic cores of proteins, and how Nature used them for important reactions, are discussed.  相似文献   

19.
The need for more selective reactions steps and the compatibility between process steps which follow on from each other has been a major driving force for organic synthesis. The synthesis of chiral compounds, metabolites, new chemical entities and natural products by a combination of chemical and enzyme reaction steps has become well established, due the existence of stable enzymes as selective catalysts which are inherently chiral by nature. Auxiliary tools such as suitable transfer reagents for reaching complete conversion, easy and robust reaction control as well as tools for straightforward workup and purification of the final product have been developed. Selective enzyme reaction steps in the area of hydrolyses, oxidation steps including hydroxylation and the Baeyer‐Villiger oxidation, carbon‐carbon bond formation and glycosylation reactions have compared favorably with existing methods of classical organic synthesis. The tools developed during optimization and scale‐up of these enzyme reaction steps have the potential to shorten development time. The introduction of selective enzyme reactions into an entire synthetic process has resulted in harmonization of improvements in economic efficiency with resultant solutions to health, safety and environment problems. This will become even more important in industrial synthetic chemistry in the future, for convenient solutions to certain intractable synthetic problems and for expanding the repertoire of chemistry by modular biocatalysts. Efficient isolation procedures for the final product are essential to take full advantage of the biocatalytic conversion to obtain high product yields.  相似文献   

20.
Lignin Pyrolysis Components and Upgrading—Technology Review   总被引:2,自引:0,他引:2  
Biomass pyrolysis oil has been reported as a potential renewable biofuel precursor. Although several review articles focusing on lignocellulose pyrolysis can be found, the one that particularly focus on lignin pyrolysis is still not available in literature. Lignin is the second most abundant biomass component and the primary renewable aromatic resource in nature. The pyrolysis chemistry and mechanism of lignin are significantly different from pyrolysis of cellulose or entire biomass. Therefore, different from other review articles in the field, this review particularly focuses on the recent developments in lignin pyrolysis chemistry, mechanism, catalysts, and the upgrading of the bio-oil from lignin pyrolysis. Although bio-oil production from pyrolysis of biomass has been proven on commercial scale and is a very promising option for production of renewable chemicals and fuels, there are still several drawbacks that have not been solved. The components of biomass pyrolysis oils are very complicated and related to the properties of bio-oil. In this review article, the details about pyrolysis oil components particularly those from lignin pyrolysis processes will be discussed first. Due to the poor physical and chemical property, the lignin pyrolysis oil has to be upgraded before usage. The most common method of upgrading bio-oil is hydrotreating. Catalysts have been widely used in petroleum industry for pyrolysis bio-oil upgrading. In this review paper, the mechanism of the hydrodeoxygenation reaction between the model compounds and catalysts will be discussed and the effects of the reaction condition will be summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号