首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the metabolism of very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL) apolipoprotein B (apoB) in seven patients with combined hyperlipidemia (CHL), using 125I-labeled VLDL and 131I-labeled LDL and compartmental modeling, before and during lovastatin treatment. Lovastatin therapy significantly reduced plasma levels of LDL cholesterol (142 vs 93 mg/dl, P less than 0.0005) and apoB (1328 vs 797 micrograms/ml, P less than 0.001). Before treatment, CHL patients had high production rates (PR) of LDL apoB. Three-fourths of this LDL apoB flux was derived from sources other than circulating VLDL and was, therefore, defined as "cold" LDL apoB flux. Compared to baseline, treatment with lovastatin was associated with a significant reduction in the total rate of entry of apoB-containing lipoproteins into plasma in all seven CHL subjects (40.7 vs. 25.7 mg/kg.day, P less than 0.003). This reduction was associated with a fall in total LDL apoB PR and in "cold" LDL apoB PR in six out of seven CHL subjects. VLDL apoB PR fell in five out of seven CHL subjects. Treatment with lovastatin did not significantly alter VLDL apoB conversion to LDL apoB or LDL apoB fractional catabolic rate (FCR) in CHL patients. In three patients with familial hypercholesterolemia who were studied for comparison, lovastatin treatment increased LDL apoB FCR but did not consistently alter LDL apoB PR. We conclude that lovastatin lowers LDL cholesterol and apoB concentrations in CHL patients by reducing the rate of entry of apoB-containing lipoproteins into plasma, either as VLDL or as directly secreted LDL.  相似文献   

2.
Previous studies established that following simultaneous injection of 125I-labeled homologous very low density lipoproteins (VLDL) and 131I-labeled homologous low density lipoproteins (LDL) into miniature pigs, a large proportion of LDL apolipoprotein B (apoB) was synthesized directly, independent of VLDL or intermediate density lipoprotein (IDL) apoB catabolism. The possibility that cholestyramine alone (a bile acid sequestrant) or in combination with mevinolin (a cholesterol synthesis inhibitor) could regulate the direct LDL apoB synthetic pathway was investigated. 125I-labeled VLDL and 131I-labeled LDL were injected into miniature pigs (n = 8) during a control period and following 18 days of cholestyramine treatment (1.0 g kg-1d-1) or following 18 days of treatment with cholestyramine and mevinolin (1.2 mg kg-1d-1). ApoB in each lipoprotein fraction was selectively precipitated using isopropanol in order to calculate specific activity. In control experiments, LDL apoB specific activity curves reached their peak values well before crossing the VLDL or IDL apoB curves. However, cholestyramine treatment resulted in LDL apoB curves reaching maximal values much closer to the point of intersection with the VLDL or IDL curves. Kinetic analyses demonstrated that cholestyramine reduced total LDL apoB flux by 33%, which was due entirely to inhibition of the LDL apoB direct synthesis pathway since VLDL-derived apoB was unaffected. In addition, the LDL apoB pool size was reduced by 30% and the fractional catabolic rate of LDL apoB was increased by 16% with cholestyramine treatment. The combination of mevinolin and cholestyramine resulted in an even more marked inhibition of the direct LDL apoB synthesis pathway (by 90%), and in two animals this pathway was completely abolished. This inhibition was selective as VLDL-derived LDL apoB synthesis was not significantly different. LDL apoB pool size was reduced by 60% due primarily to the reduced synthesis as well as a 40% greater fractional removal rate. These results are consistent with the idea that cholestyramine and mevinolin increase LDL catabolism by inducing hepatic apoB, E receptors. We have now shown that the direct synthesis of LDL apoB is selectively inhibited by these two drugs.  相似文献   

3.
Dietary fat saturation has been shown to affect hepatic apoB/E receptor expression and to modify low density lipoprotein (LDL) composition and density in guinea pigs. The current studies were designed to investigate the independent and interactive effects of dietary fat saturation alterations in apoB/E receptor expression and LDL composition on in vivo LDL turnover kinetics, both receptor-mediated and receptor-independent. Guinea pigs were fed semi-purified diets containing 15% fat, either polyunsaturated corn oil (CO), monounsaturated olive oil (OL), or saturated lard, and injected with radioiodinated LDL isolated from animals fed the homologous diet. Blood samples were obtained over 33 h to determine apoLDL fractional catabolic rates (FCR) and flux rates. Compared to animals fed OL- or lard-based diets, intake of the CO-based diet resulted in a 50% decrease in LDL apoB pool size associated with a twofold increase in receptor-mediated FCR (P less than 0.001) and a 28% decrease in flux rate (P less than 0.05). Maximal LDL binding capacity of hepatic apoB/E receptors, determined in vitro, was twofold higher for animals fed the CO-based diet compared to guinea pigs fed the OL- and lard-based diets (P less than 0.01). There was a significant correlation between hepatic apoB/E receptor number and in vivo receptor-mediated LDL FCR (r = 0.987). Significant differences in LDL turnover were related to the source of LDL. When injected into animals fed a nonpurified commercial diet, the smaller, cholesteryl ester-depleted LDL isolated from animals fed the CO-based diet had a twofold higher FCR compared to larger LDLs from guinea pigs fed the OL- and lard-based diets, which had similar turnover rates. When LDL from animals fed the commercial diet was radiolabeled and injected into animals fed the three types of dietary fat, significant differences in LDL turnover were observed in the order CO greater than lard greater than OL, suggesting that intravascular processing and tissue uptake of the smaller LDL from animals fed the commercial diet varies depending on the dietary fat saturation fed to the recipient animals. These studies demonstrate that guinea pigs fed polyunsaturated fat diets lower plasma LDL levels in part by an increase in apoB/E receptor-mediated fractional LDL turnover and a decrease in apoLDL flux. In addition, fat saturation alters LDL composition and size which independently affect LDL turnover rates in vivo.  相似文献   

4.
The present study was undertaken to elucidate the metabolic basis for the increased remnants and lipoprotein(a) [Lp(a)] and decreased LDL apolipoprotein B (apoB) levels in human apoE deficiency. A primed constant infusion of (13)C(6)-phenylalanine was administered to a homozygous apoE-deficient subject. apoB-100 and apoB-48 were isolated, and tracer enrichments were determined by gas chromatography-mass spectrometry, then kinetic parameters were calculated by multicompartmental modeling. In the apoE-deficient subject, fractional catabolic rates (FCRs) of apoB-100 in VLDL and intermediate density lipoprotein and apoB-48 in VLDL were 3x, 12x, and 12x slower than those of controls. On the other hand, the LDL apoB-100 FCR was increased by 2.6x. The production rate of VLDL apoB-100 was decreased by 45%. In the Lp(a) kinetic study, two types of Lp(a) were isolated from plasma with apoE deficiency: buoyant and normal Lp(a). (125)I-buoyant Lp(a) was catabolized at a slower rate in the patient. However, (125)I-buoyant Lp(a) was catabolized at twice as fast as (131)I-normal Lp(a) in the control subjects. In summary, apoE deficiency results in: 1) a markedly impaired catabolism of VLDL/chylomicron and their remnants due to lack of direct removal and impaired lipolysis; 2) an increased rate of catabolism of LDL apoB-100, likely due to upregulation of LDL receptor activity; 3) reduced VLDL apoB production; and 4) a delayed catabolism of a portion of Lp(a).  相似文献   

5.
The effect of apolipoprotein (apo) E genotype on apoB-100 metabolism was examined in three normolipidemic apoE2/E2, five type III hyperlipidemic apoE2/E2, and five hyperlipidemic apoE3/E2 subjects using simultaneous administration of 131I-VLDL and 125I-LDL, and multi-compartmental modeling. Compared with normolipidemic apoE2/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased plasma and VLDL cholesterol, plasma and VLDL triglycerides, and VLDL and intermediate density lipoprotein (IDL) apoB concentrations (P < 0.05). These abnormalities were chiefly a consequence of decreased VLDL and IDL apoB fractional catabolic rate (FCR). Compared with hyperlipidemic E3/E2 subjects, type III hyperlipidemic E2/E2 subjects had increased IDL apoB concentration and decreased conversion of IDL to LDL particles (P < 0.05). In a pooled analysis, VLDL cholesterol was positively associated with VLDL and IDL apoB concentrations and the proportion of VLDL apoB in the slowly turning over VLDL pool, and was negatively associated with VLDL apoB FCR after adjusting for subject group. VLDL triglyceride was positively associated with VLDL apoB concentration and VLDL and IDL apoB production rates after adjusting for subject group. A defective apoE contributes to altered lipoprotein metabolism but is not sufficient to cause overt hyperlipidemia. Additional genetic mutations and environmental factors, including insulin resistance and obesity, may contribute to the development of type III hyperlipidemia.  相似文献   

6.
The effects of continuously administering both conjugated equine estrogens (CEE) and micronized progesterone (MP) on the concentration, composition, production and catabolism of very low density (VLDL) and low density lipoproteins (LDL) have not previously been reported. The mechanism of the hormonally induced reductions of plasma LDL cholesterol of S(f) 0;-20 (mean 16%, P < 0.005) and LDL apoB (mean 6%, P < 0.025) were investigated by studying the kinetics of VLDL and LDL apolipoprotein (apo) B turnover after injecting autologous (131)I-labeled VLDL and (125)I-labeled LDL into each of the 6 moderately hypercholesterolemic postmenopausal subjects under control conditions and again in the fourth week of a 7-week course of therapy (0.625 mg/d of CEE + 200 mg/d of MP). The combined hormones significantly lowered plasma LDL apoB by increasing the mean fractional catabolic rate of LDL apoB by 20% (0. 32 vs. 0.27 pools/d, P < 0.03). Treatment also induced a significant increase in IDL production (6.3 vs. 3.7 mg/kg/d, P = 0.028). However, this did not result in an increase in LDL production because of an increase in IDL apoB direct catabolism (mean 102%, P = 0.033). VLDL kinetic parameters were unchanged and the concentrations of plasma total triglycerides (TG), VLDL-TG, VLDL-apoB did not rise as often seen with estrogen alone. Plasma HDL-cholesterol rose significantly (P < 0.02). Our major conclusion is that increased fractional catabolism of LDL underlies the LDL-lowering effect of the combined hormones.  相似文献   

7.
We investigated the effect of the bile acid sequestrant, colestipol hydrochloride, on the composition and metabolism of human low density lipoprotein (LDL). Colestipol treatment produced a disproportionate decrease in LDL cholesterol compared to LDL apoB, resulting in a significant decrease in the LDL cholesterol/apoB ratio. Electron microscopy revealed that LDL particles were smaller in size and analytical ultracentrifugation demonstrated that colestipol therapy selectively depleted larger, more buoyant LDL particles of Sf degrees 6-7. Thus, colestipol therapy produced LDL that were smaller in size, more dense, and characterized by a decreased cholesterol to protein ratio. To determine whether the altered LDL had different metabolic properties, autologous LDL was isolated from subjects before and during colestipol therapy and their fractional catabolic rates (FCR) were then simultaneously determined in the same patient while on therapy. Eight LDL turnover studies comparing the catabolism of LDL isolated during therapy (Rx-LDL) and LDL isolated off therapy (Con-LDL) were performed in six subjects. All subjects responded to colestipol treatment, with an average 29% fall in LDL cholesterol. In four of six subjects, and in six of eight studies, the FCR of Rx-LDL was substantially slower than that of Con-LDL. These studies demonstrate that a drug intervention may alter subpopulations of LDL particles in such a way that overall LDL composition is changed. This alteration may independently affect the intrinsic metabolic behavior of the LDL. We suggest that such drug- (or dietary-) induced changes in LDL composition need to be considered in kinetic studies designed to assess the overall impact of the perturbation being studied.  相似文献   

8.
Stable isotope methodology has been adapted to the study of lipoprotein turnover in human subjects. Using endogenous [15N]glycine labeling and gas-liquid chromatographic-mass spectrometric analysis, synthesis of apolipoprotein B in very low density lipoprotein (VLDL) was measured directly in five normal and two hyperlipidemic subjects. An isotopic precursor steady state was achieved during the studies by utilizing a priming dose and constant infusion containing [15N]glycine. Measurement of the plateau in 15N enrichment in the urinary hippurate produced during each study was used to estimate the 15N enrichment of the hepatic glycine precursor pool. The range of values for the fractional synthetic rate of VLDL apoB in the normal subjects obtained by this method was 5.9 to 11.5 day-1, with a mean of 9.2 +/- 2.4 (SD). This value agrees with the results of previous investigations which have utilized other methods. The method was also tested in two hypertriglyceridemic subjects and gave fractional synthetic rates of VLDL apoB that were significantly lower than in normals (1.5 and 2.8 day-1). This stable isotope method allows calculation of the fractional synthetic rate of VLDL apoB by maintaining an isotopic steady state throughout the study. It makes possible repeated studies in the same individual since no risk of exposure to radioisotopes is involved.  相似文献   

9.
HMG-CoA reductase inhibitors (statins) are effective lipid-altering drugs for the treatment of dyslipidemia in patients with type 2 diabetes mellitus. We conducted a randomized, double-blind, placebo-controlled, crossover design trial to determine the effects of simvastatin, 80 mg/day, on plasma lipid and lipoprotein levels and on the metabolism of apolipoprotein B (apoB) in VLDL, intermediate density lipoprotein (IDL), and LDL and of triglycerides (TGs) in VLDL. Simvastatin therapy decreased TG, cholesterol, and apoB significantly in VLDL, IDL, and LDL. These effects were associated with reduced production of LDL-apoB, mainly as a result of reduced secretion of apoB-lipoproteins directly into the LDL density range. Statin therapy also reduced hepatic production of VLDL-TG. There were no effects of simvastatin on the fractional catabolic rates of VLDL-apoB or -TG or LDL-apoB. The basis for decreased VLDL-TG secretion during simvastatin treatment is not clear, but recent studies suggest that statins may activate peroxisomal proliferator-activated receptor alpha (PPARalpha). Activation of PPARalpha could lead to increased hepatic oxidation of fatty acids and less synthesis of TG for VLDL assembly.  相似文献   

10.
Rabbits fed low-fat, cholesterol-free, semi-purified diets containing casein developed a marked hypercholesterolemia compared to rabbits fed a similar diet containing soy protein (plasma cholesterol 281 +/- 31 vs. 86 +/- 9 mg/dl; P less than 0.05). Turnover studies (three per dietary group) were carried out in which homologous 125I-labeled VLDL and 131I-labeled LDL were injected simultaneously into casein- (n = 8) or soy protein- (n = 9) fed rabbits. ApoB-specific activities were determined in VLDL, IDL and LDL isolated from the pooled plasma of two or three rabbits per dietary group. The production rate of VLDL apoB (1.20 +/- 0.3 vs. 1.09 +/- 0.1 mg/h per kg) was similar for the two dietary groups. The fractional catabolic rate of VLDL apoB was lower for the casein group (0.15 +/- 0.03 vs. 0.23 +/- 0.01.h-1; 0.05 less than P less than 0.10). Although the pool size of VLDL apoB was higher in the casein group (8 +/- 2 vs. 5 +/- 0.3 mg/kg), this value did not reach statistical significance. For LDL apoB, the increased pool size in casein-fed rabbits (30 +/- 5 vs. 5 +/- 1 mg/kg; P less than 0.01) was associated with a decreased fractional catabolic rate (0.03 +/- 0.005 vs. 0.08 +/- 0.008.h-1; P less than 0.01) and a 2-fold increase in the production rate of LDL apoB (1 +/- 0.3 vs. 0.4 +/- 0.06 mg/kg per h; 0.05 less than P less than 0.10) compared to rabbits fed soy protein. Analysis of precursor-product relationships between the various lipoprotein fractions showed that casein-fed rabbits synthesized a higher proportion of LDL apoB (95% +/- 2 vs. 67% +/- 2; P less than 0.001) independent of VLDL catabolism. These results support the concept that the hypercholesterolemia in casein-fed rabbits is associated with impaired LDL removal consistent with a down-regulation of LDL receptors. These changes do not occur when the casein is replaced by soy protein.  相似文献   

11.
Nine hypercholesterolemic and hypertriglyceridemic subjects were enrolled in a randomized, placebo-controlled, double-blind, crossover study to test the effect of atorvastatin 20 mg/day and 80 mg/day on the kinetics of apolipoprotein B-100 (apoB-100) in triglyceride-rich lipoprotein (TRL), intermediate density lipoprotein (IDL), and LDL, of apoB-48 in TRL, and of apoA-I in HDL. Compared with placebo, atorvastatin 20 mg/day was associated with significant reductions in TRL, IDL, and LDL apoB-100 pool size as a result of significant increases in fractional catabolic rate (FCR) without changes in production rate (PR). Compared with the 20 mg/day dose, atorvastatin 80 mg/day caused a further significant reduction in the LDL apoB-100 pool size as a result of a further increase in FCR. ApoB-48 pool size was reduced significantly by both atorvastatin doses, and this reduction was associated with nonsignificant increases in FCR. The lathosterol-campesterol ratio was decreased by atorvastatin treatment, and changes in this ratio were inversely correlated with changes in TRL apoB-100 and apoB-48 PR. No significant effect on apoA-I kinetics was observed at either dose of atorvastatin. Our data indicate that atorvastatin reduces apoB-100- and apoB-48-containing lipoproteins by increasing their catabolism and has a dose-dependent effect on LDL apoB-100 kinetics. Atorvastatin-mediated changes in cholesterol homeostasis may contribute to apoB PR regulation.  相似文献   

12.
Apheresis is a treatment option for patients with severe hypercholesterolemia and coronary artery disease. It is unknown whether such therapy changes kinetic parameters of lipoprotein metabolism, such as apolipoprotein B (apoB) secretion rates, conversion rates, and fractional catabolic rates (FCR). We studied the acute effect of apheresis on metabolic parameters of apoB in five patients with drug-resistant hyperlipoproteinemia, using endogenous labeling with D(3)-leucine, mass spectrometry, and multicompartmental modeling. Patients were studied prior to and immediately after apheresis therapy. The two tracer studies were modeled simultaneously, taking into account the non-steady-state concentrations of apoB. The low density lipoprotein (LDL)-apoB concentration was 120+/-32 mg dl(-1) prior to and 52+/-18 mg dl(-1) immediately after apheresis therapy. The metabolic studies indicate that no change in apoB secretion (13.9+/- 4.9 mg kg(-1) day(-1)) is required to fit the tracer and apoB mass data obtained before and after apheresis and that in four of the five patients the LDL-apoB FCR (0.21+/-0.02 day(-1)) was not altered after apheresis. In one subject the LDL-apoB FCR temporarily increased from 0.22 day(-1) to 0.35 day(-1) after apheresis. The conversion rate of very low density lipoprotein (VLDL)-apoB to LDL-apoB is temporarily decreased from 76 to 51% after apheresis and thus less LDL-apoB is produced after apheresis. We conclude that an acute reduction of LDL-apoB concentration does not affect apoB secretion or LDL-apoB FCR, but that apoB conversion to LDL is temporarily decreased. Thus, in most patients the decreased rate of delivery of neutral lipids or apoB to the liver does not result in an upregulation of LDL receptors or in decreased apoB secretion.  相似文献   

13.
Turnover of 125I-low density lipoprotein (LDL) and of 131I-high density lipoprotein (HDL) was determined before and after end-to-side portacaval shunt in eight swine. LDL (d 1.019-1.063) and HDL (d.1.09-1.21) were isolated by ultracentrifugation and iodinated by the iodine monochloride technique. Immediately postoperatively there was no consistent change in the fractional catabolic rate (FCR) of LDL compared to preoperative control values, while in all animals FCR of HDL was significantly increased (by as much as 300%). After recovery from surgery, neither LDL nor HDL catabolic rates were significantly elevated above control values in four swine. However, plasma levels of LDL and HDL protein, and of LDL and HDL cholesterol were significantly reduced 10-12 weeks after the portacaval shunt. The reduced levels of LDL and HDL associated with normal fractional clearance rates imply a reduction in synthesis of LDL and HDL following portal diversion.  相似文献   

14.
Studies have shown that dietary fat saturation affects guinea pig plasma low density lipoprotein (LDL) levels by altering both LDL receptor-mediated catabolism and flux rates of LDL (Fernandez et al. 1992. J. Lipid Res. 33: 97-109). The present studies investigated whether saturated fatty acids of varying chain lengths have differential effects on LDL metabolism. Guinea pigs were fed 15% (w/w, 35% calories) fat diets containing either palm kernel oil (PK), 52% lauric acid/18% myristic acid; palm oil (PO), 43% palmitic acid/4% stearic acid; or beef tallow (BT), 23% palmitic acid/14% stearic acid. Plasma LDL cholesterol levels were significantly higher for animals fed the PK diet (P < 0.001) with values of 83 +/- 19 (n = 12), 53 +/- 8 (n = 12) and 44 +/- 16 (n = 10) mg/dl for PK, PO, and BT diets, respectively. The relative percentage composition of LDL was modified by fat type; however, LDL diameters and peak densities were not different between diets, indicating no effect of saturated fatty acid composition on LDL size. ApoB/E receptor-mediated LDL fractional catabolic rates (FCR) were significantly lower in animals fed the PK diet (P < 0.01) and LDL apoB flux rates were reduced (P < 0.01) in animals fed the BT diet. A correlation was found between plasma LDL levels and receptor-mediated LDL catabolism (r = -0.66, P < 0.01). A higher apoB/E receptor number (Bmax), determined by in vitro LDL binding to guinea pig hepatic membranes, was observed for animals fed BT versus PK or PO diets and Bmax values were significantly correlated with plasma LDL levels (r = -0.776, P < 0.001). These results indicate that saturated fatty acids of varying chain length have differential effects on hepatic apoB/E receptor expression and on LDL apoB flux rates which in part account for differences in plasma LDL cholesterol levels of guinea pigs fed these saturated fats.  相似文献   

15.
This study was designed to investigate the response of Type III hyperlipoproteinemic subjects to bezafibrate therapy. The metabolism of apolipoprotein B was examined in four lipoprotein subclasses of Sf 60-400 (large very low density lipoprotein (VLDL)), Sf 20-60 (small VLDL), Sf 12-20 (intermediate density lipoprotein (IDL)), and Sf 0-12 (low density lipoprotein (LDL)) before and during bezafibrate therapy. Treatment reduced the plasma concentration of VLDL and raised high density lipoprotein (HDL) cholesterol. There was no net change in LDL cholesterol or its associated apolipoprotein B. The decrease in plasma VLDL derived mainly from an inhibition of synthesis of both large and small subfractions which reduced the number of particles in the circulation without normalizing their lipid composition. Catabolism of the larger VLDL also increased, presumably as a result of lipoprotein lipase activation. Although the plasma concentration of LDL was unchanged, both its synthesis and catabolism were perturbed. Its fractional catabolic rate fell by 50%, but the impact that this would have had on its steady state level in the circulation was apparently blunted by a decrease in its synthesis from Sf 12-20 IDL. In the control phase of the study, most IDL apolipoprotein B was converted to LDL. Bezafibrate therapy channelled this material towards direct catabolism.  相似文献   

16.
The kinetics of apolipoproteins B and C were studied in 14 normal and hyperlipoproteinemic subjects after injection of exogenously (125)I-labeled very low density lipoprotein (VLDL) particles. Plasma radioactivities of apoB and apoC were determined over a period of 4 days in VLDL (d < 1.006) and total radioactivity in intermediate (IDL) (1.006 < d < 1.019), low (LDL) (1.019 < d < 1.063), and high (HDL) (1.063 < d < 1.21) density lipoproteins. The data were analyzed by the use of a model, developed mostly from these data, with the following results. The VLDL particle undergoes a series of incremental density changes, most likely due to a number of delipidation steps, during which apoB stays with the particle until the density reaches the IDL range. There is, however, a loss of apoC associated with these delipidation steps. In our normal subjects, all IDL apoB eventually becomes LDL. In our hyperlipemic subjects some of the apoB on IDL is also degraded directly. The apoC lost by VLDL and IDL recycles to HDL, and most of it is picked up again by newly synthesized VLDL. There is a slowdown of the stepwise delipidation process in all hyperlipemic individuals studied. Three additional features became apparent in the type III subjects. First, there is a significant increase (a factor of 2 compared to normal) in the apoB synthesis rate by way of VLDL; second, there is an induced direct apoB synthesis pathway by way of IDL (and/or LDL); third, a bypass of the regular stepwise VLDL delipidation pathway is induced by which VLDL particles lose apoC but none of their apoB, thereby forming a new particle with metabolic properties similar to LDL, but with a density still in the VLDL density range. Two type III patients treated with nicotinic acid and clofibrate showed a sharp decrease in their VLDL apoB synthesis rates. This was somewhat compensated by an increased IDL apoB synthesis rate. A type I patient on a medium chain triglyceride diet also showed a number of metabolic changes, including reduced VLDL apoB synthesis and the induction of considerable IDL and/or LDL apoB synthesis.  相似文献   

17.
Apolipoprotein B (apoB) metabolism was investigated in 20 men with plasma triglyceride 0.66-2.40 mmol/l and plasma cholesterol 3.95-6. 95 mmol/l. Kinetics of VLDL(1) (S(f) 60-400), VLDL(2) (S(f) 20-60), IDL (S(f) 12-20), and LDL (S(f) 0;-12) apoB were analyzed using a trideuterated leucine tracer and a multicompartmental model which allowed input into each fraction. VLDL(1) apoB production varied widely (from 5.4 to 26.6 mg/kg/d) as did VLDL(2) apoB production (from 0.18 to 8.4 mg/kg/d) but the two were not correlated. IDL plus LDL apoB direct production accounted for up to half of total apoB production and was inversely related to plasma triglyceride (r = -0.54, P = 0.009). Percent of direct apoB production into the IDL/LDL density range (r = 0.50, P < 0.02) was positively related to the LDL apoB fractional catabolic rate (FCR). Plasma triglyceride in these subjects was determined principally by VLDL(1) and VLDL(2) apoB fractional transfer rates (FTR), i.e., lipolysis. IDL apoB concentration was regulated mainly by the IDL to LDL FTR (r = -0.71, P < 0.0001). LDL apoB concentration correlated with VLDL(2) apoB production (r = 0.48, P = 0.018) and the LDL FCR (r = -0.77, P < 0. 001) but not with VLDL(1), IDL, or LDL apoB production. Subjects with predominantly small, dense LDL (pattern B) had lower VLDL(1) and VLDL(2) apoB FTRs, higher VLDL(2) apoB production, and a lower LDL apoB FCR than those with large LDL (pattern A). Thus, the metabolic conditions that favored appearance of small, dense LDL were diminished lipolysis of VLDL, resulting in a raised plasma triglyceride above the putative threshold of 1.5 mmol/l, and a prolonged residence time for LDL. This latter condition presumably permitted sufficient time for the processes of lipid exchange and lipolysis to generate small LDL particles.  相似文献   

18.
To evaluate factors regulating the concentrations of plasma low density lipoproteins (LDL), apolipoprotein B metabolism was studied in nine Pima Indians (25 +/- 2 yr, 191 +/- 20% ideal wt) with low LDL cholesterol (77 +/- 7 mg/dl) and apoB (60 +/- 4 mg/dl) and in eight age- and weight-matched Caucasians with similar very low density lipoprotein (VLDL) concentrations, but higher LDL (cholesterol = 104 +/- 18; apoB = 82 +/- 10; P less than 0.05). Subjects received autologous 131I-labeled VLDL and 125I-labeled LDL, and specific activities of VLDL-apoB, intermediate density lipoprotein (IDL)-apoB, and LDL-apoB were analyzed using a multicompartmental model. Synthesis of LDL-apoB was similar (1224 +/- 87 mg/d in Pimas vs 1218 +/- 118 mg/d in Caucasians) but in Pimas the fractional catabolic rate (FCR) for LDL-apoB was higher (0.48 +/- 0.02 vs 0.39 +/- 0.04 d-1, P less than 0.05). In the Pimas, a much higher proportion of VLDL-apoB was catabolized without conversion to LDL (47 +/- 3 vs 30 +/- 5%, P less than 0.01). When all subjects were considered together, LDL-apoB concentrations were negatively correlated with both FCR for LDL-apoB (r = -0.79, P less than 0.0001) and the non-LDL pathway (r = -0.43, P less than 0.05). Also, the direct removal (non-LDL) path was correlated with VLDL-apoB production (r = 0.49, P = 0.03), and the direct removal pathway and FCR for LDL-apoB were correlated (r = 0.49, P = 0.03). In conclusion, plasma LDL appear to be regulated by both the catabolism of LDL and the extent of metabolism of VLDL without conversion to LDL; both of these processes may be mediated by the apoB/E receptor, and appear to increase in response to increasing VLDL production.  相似文献   

19.
The kinetics of apolipoprotein B (apoB) were measured in seven studies in heterozygous, familial hypercholesterolemic subjects (FH) and in five studies in normal subjects, using in vivo tracer kinetic methodology with a [3H]leucine tracer. Very low density (VLDL) and low density lipoproteins (LDL) were isolated ultracentrifugally and LDL was fractionated into high and low molecular weight subspecies. ApoB was isolated, its specific radioactivity was measured, and the kinetic data were analyzed by compartmental modeling using the SAAM computer program. The pathways of apoB metabolism differ in FH and normal subjects in two major respects. Normals secrete greater than 90% of apoB as VLDL, while one-third of apoB is secreted as intermediate density lipoprotein IDL/LDL in FH. Normals lose 40-50% of apoB from plasma as VLDL/IDL, while FH subjects lose none, metabolizing all of apoB to LDL. In FH, there is also the known prolongation of LDL residence time. The leucine tracer, biosynthetically incorporated into plasma apoB, permits distinguishing the separate pathways by which the metabolism of apoB is channeled. ApoB synthesis and secretion require 1.3 h. ApoB is secreted by three routes: 1) as large VLDL where it is metabolized by a delipidation chain; 2) as a rapidly metabolized VLDL fraction converted to LDL; and 3) as IDL or LDL. ApoB is metabolized along two pathways. The delipidation chain processes large VLDL to small VLDL, IDL, and LDL. The IDL pathway channels nascent, rapidly metabolized VLDL and IDL particles into LDL. It thus provides a fast pathway for the entrance of apoB tracer into LDL, while the delipidation pathway is a slower route for channeling apoB through VLDL into LDL. LDL apoB is derived in almost equal amounts from both pathways, which feed predominantly into large LDL. Small LDL is a product of large LDL, and the major loss of LDL-apoB is from small LDL. Two features of apoB metabolism in FH, the major secretory pathway through IDL and the absence of a catabolic loss of apoB from VLDL/IDL, greatly facilitate measuring the metabolic channeling of apoB into LDL.  相似文献   

20.
The effects of cholestyramine and of clofibrate on the turnover rates of individual cholesteryl esters in whole human plasma and in each of the three classes of plasma lipoproteins have been studied. Four hyperlipidemic patients (two under treatment with each of the two drugs) were injected intravenously with cholesterol-(14)C, and serial plasma samples were collected after 3-4 hr, 8 hr, 24 hr, and 4-5 days. The plasma samples were separated into three classes of lipoproteins by ultracentrifugation. The cholesteryl esters and free cholesterol were isolated from each sample, and the specific radioactivity of the free and esterified cholesterol was determined. The specific radioactivity of each individual cholesteryl ester was then determined for each sample, by separately measuring the distribution of cholesterol mass and of radioactivity among four different cholesteryl ester groups, namely the saturated, mono-, di-, and tetra-unsaturated esters. In all subjects the plasma cholesteryl esters were metabolically heterogeneous, and could be divided into three pools corresponding to the three classes of plasma lipoproteins. High density lipoprotein (d > 1.063) cholesteryl esters showed the greatest fractional turnover rate, and low density lipoprotein (d 1.019-1.063) cholesteryl esters showed the smallest fractional turnover rate. In each subject the cholesteryl ester composition of the three classes of plasma lipoprotein was almost identical. Within each lipoprotein, and in whole plasma, all the different individual cholesteryl esters were found to turn over at the same fractional rate. In all respects these results were similar to those previously obtained with normal subjects. The results suggest that neither drug has a strongly selective effect on the turnover of one particular cholesteryl ester, or on the turnover or composition of the cholesteryl esters in one particular plasma lipoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号