首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A substance capable of stimulating the activities of pyruvate dehydrogenase and low Km cyclic AMP phosphodiesterase was prepared from H4-II-EC3′ hepatoma cells by acid extraction and partially purified by molecular exclusion chromatography. The material thus prepared by gel chromatography was found to stimulate the activities of these enzymes in a concentration-dependent manner. The amount or activity of the pyruvate dehydrogenase stimulating factor was increased in cells which had been treated with physiological concentrations of insulin (0.2 mU/ml). Increasing the concentration of insulin increased the amount or activity of the factor generated. High concentrations of insulin did not cause a reversal of the effects of insulin. The stimulation of pyruvate dehydrogenase activity by the factor was eliminated when sodium fluoride (75 mm) was present in the enzyme assay, implying that activation was mediated by the pyruvate dehydrogenase phosphatase. The enzyme-stimulating factor isolated from hepatoma cells shares a number of important characteristics with the putative second messenger of insulin prepared from other cell types: (1) it is heat and acid stable, (2) it has a similar apparent molecular weight, (3) it is generated in an insulin-dependent manner, (4) it stimulates the activity of pyruvate dehydrogenase by a fluoride-sensitive mechanism, and (5) it elutes from the anion-exchange resin AG 1-X8 at an ionic strength of 0.4 m. These findings suggest that the stimulator of pyruvate dehydrogenase and of low Km cyclic AMP phosphodiesterase isolated from hepatoma cells has chemical properties identical with those of the putative second messenger of insulin action isolated from a number of other insulin-sensitive tissues.  相似文献   

2.
Reactive oxygen species (ROS) released from polymorphonuclear leukocytes and macrophages could cause DNA damage, but also induce cell death. Therefore inhibition of cell death must be an important issue for accumulation of genetic changes in lymphoid cells in inflammatory foci. Scavengers in the post culture medium of four lymphoid cell lines, lymphoblastoid cell lines (LCL), Raji, BJAB and Jurkat cells, were examined. Over 80% of cultured cells showed cell death 24 h after xanthine (X)/xanthine oxidase (XOD) treatment, which was suppressed by addition of post culture medium from four cell lines in a dose-dependent manner. H2O2 but not O·-2 produced by the X/XOD reaction was responsible for the cytotoxity, thus we used H2O2 as ROS stress thereafter. The H2O2-scavenging activity of post culture media from four cell lines increased rapidly at the first day and continued to increase in the following 2–3 days for LCL, Raji and BJAB cells. The scavenging substance was shown to be pyruvate, with various concentrations in the cultured medium among cell lines. Over 99% of total pyruvate was present in the extracellular media and less than 1% in cells. α-Cyano-4-hydroxycinnamate, a specific inhibitor of the H+-monocarbohydrate transporter, increased the H2O2-scavenging activity in the media from all four cell lines via inhibition of pyruvate re-uptake by cultured cells from the media. These findings suggest that lymphoid cells in inflammatory foci could survive even under ROS by producing pyruvate, so that accumulation of lymphoid cells with DNA damage is possible.  相似文献   

3.
The rate of pyruvate kinase flux in the intact cell is estimated by a new procedure, involving trapping of 14C from NaH14CO3 in a large pyruvate + lactate pool, and calculation of the specific activity of phosphoenol pyruvate. With high concentrations of pyruvate as substrate for isolated rat liver cells, cyclic AMP (0.1 mM) depresses pyruvate kinase flux by about 45%, in addition to inhibiting both glucose and lactate formation. The inhibition of pyruvate kinase may cause an inhibition of hydrogen translocation from the mitochondria to the cytosol.  相似文献   

4.
1. The activities of pyruvate dehydrogenase in rat lymphocytes and mouse macrophages are much lower than those of the key enzymes of glycolysis and glutaminolysis. However, the rates of utilization of pyruvate (at 2 mM), from the incubation medium, are not markedly lower than the rate of utilization of glucose by incubated lymphocytes or that of glutamine by incubated macrophages. This suggests that the low rate of oxidation of pyruvate produced from either glucose or glutamine in these cells is due to the high capacity of lactate dehydrogenase, which competes with pyruvate dehydrogenase for pyruvate. 2. Incubation of either macrophages or lymphocytes with dichloroacetate had no effect on the activity of subsequently isolated pyruvate dehydrogenase; incubation of mitochondria isolated from lymphocytes with dichloroacetate had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, and the double-reciprocal plot of [1-14C]pyruvate concentration against rate of 14CO2 production was linear. In contrast, ADP or an uncoupling agent increased the rate of 14CO2 production from [1-14C]pyruvate by isolated lymphocyte mitochondria. These data suggest either that pyruvate dehydrogenase is primarily in the a form or that pyruvate dehydrogenase in these cells is not controlled by an interconversion cycle, but by end-product inhibition by NADH and/or acetyl-CoA. 3. The rate of conversion of [3-14C]pyruvate into CO2 was about 15% of that from [1-14C]pyruvate in isolated lymphocytes, but was only 1% in isolated lymphocyte mitochondria. The inhibitor of mitochondrial pyruvate transport, alpha-cyano-4-hydroxycinnamate, inhibited both [1-14C]- and [3-14C]-pyruvate conversion into 14CO2 to the same extent, and by more than 80%. 4. Incubations of rat lymphocytes with concanavalin A had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, but increased the rate of conversion of [3-14C]pyruvate into 14CO2 by about 50%. This suggests that this mitogen causes a stimulation of the activity of pyruvate carboxylase.  相似文献   

5.
1. The effects of adenine nucleotides on pyruvate metabolism by isolated liver cells and isolated mitochondria have been investigated. The amount of pyruvate carboxylated has been estimated by determining the tricarboxylic acid-cycle intermediates, glutamate and aspartate accumulating in the incubation medium. The extent of pyruvate oxidation has been assessed by measuring oxygen uptake and the yield of 14CO2 from [1-14C]pyruvate and [2-14C]pyruvate. 2. When catalytic amounts of adenine nucleotides (1–2mm) were added to suspensions of isolated liver cells incubated with pyruvate an ATP:ADP ratio greater than 6:1 was maintained. Both pyruvate oxidation to acetyl-CoA and the oxidation of acetyl-CoA through the tricarboxylic acid cycle were stimulated but pyruvate carboxylation was not affected. The production of acetyl-CoA exceeded the capacity of the cells for the oxidation of acetyl-CoA and the excess was converted into ketone bodies. 3. If a low ATP:ADP ratio was maintained in isolated cells or mitochondria by incubating them with dinitrophenol or hexokinase, pyruvate carboxylation was grossly inhibited, oxygen uptake depressed and ketone-body formation stimulated. Measurement of oxaloacetate concentrations confirmed that under these conditions oxaloacetate was rate-limiting for the oxidation of acetyl-CoA via the tricarboxylic acid cycle. The inclusion in the incubation medium of fumarate (1·25mm) completely prevented the ketogenic action of dinitrophenol or hexokinase. 4. When ADP (5mm) was added to a suspension of isolated liver cells incubated with pyruvate an actual ADP concentration of about 1mm was attained. This brought about effects on pyruvate metabolism similar to those obtained with dinitrophenol or hexokinase. 5. These results support the concept that the relative concentrations of adenine nucleotides within the liver cell may play a role in governing the rates of pyruvate oxidation and carboxylation. In addition, they provide further evidence that the availability of oxaloacetate in the liver cell can play a key role in determining whether acetyl-CoA arising from pyruvate is oxidized through the tricarboxylic acid cycle or converted into ketone bodies.  相似文献   

6.
The effect of acute insulin treatment of hepatocytes on pyruvate carboxylation in both isolated mitochondria and cells rendered permeable by filipin was examined. Challenging the cells with insulin alone had no effect on either the basal rate of pyruvate carboxylation or gluconeogenesis, although it did suppress the responses to both glucagon and catecholamines. Insulin treatment was unable to antagonize the enhanced rate of pyruvate carboxylation caused by stimulation of the cells with either angiotensin or vasopressin. Neither insulin nor the gluconeogenic hormones altered the total extractable pyruvate carboxylase activity in the isolated mitochondria, suggesting that the effect of hormones at the level of the isolated intact organelle was mediated via alterations in the intramitochondrial concentrations of effector molecules, notably ATP and the [ATP]/[ADP] ratio and substrate availability. The alterations in pyruvate carboxylation correlate well with glucose synthesis in terms of sensitivity to effector molecules, putative second messengers and time of onset of the response, indicating that alterations in the flux through this enzyme are compatible with it being an important site in the control of gluconeogenesis from C3 precursors.  相似文献   

7.
Plant alternative oxidase (AOX) activity in isolated mitochondria is regulated by carboxylic acids, but reaction and regulatory mechanisms remain unclear. We show that activity of AOX protein purified from thermogenic Arum maculatum spadices is sensitive to pyruvate and glyoxylate but not succinate. Rapid, irreversible AOX inactivation occurs in the absence of pyruvate, whether or not duroquinol oxidation has been initiated, and is insensitive to duroquinone. Our data indicate that pyruvate stabilises an active conformation of AOX, increasing the population of active protein in a manner independent of reducing substrate and product, and are thus consistent with an exclusive effect of pyruvate on the enzyme’s apparent Vmax.  相似文献   

8.
Pyruvate fermentation inRhodospirillum rubrum (strains F1, S1, and Ha) was investigated using cells precultured on different substrates anaerobically in the light and than transferred to anaerobic dark conditions. Pyruvate formate lyase was always the key enzyme in pyruvate fermentation but its activity was lower than in cells which have been precultured aerobically in darkness. The preculture substrate also had a clear influence on the pyruvate formate lyase activity. Strains F1 and S1 metabolized the produced formate further to H2 and CO2. A slight production of CO2 from pyruvate, without additional H2-production, could also be detected. It was concluded from this that under anaerobic dark conditions a pyruvate dehydrogenase was also functioning. On inhibition of pyruvate formate lyase the main part of pyruvate breakdown was taken over by pyruvate dehydrogenase.When enzyme synthesis was inhibited by chloramphenicol, propionate production in contrast to formate production was not affected. Protein synthesis was not significant during anaerobic dark culture. Bacteriochlorophyll. however, showed, after a lag phase, a clear rise.Abbreviations Bchl Bacteriochlorophyll - CoA Coenzyme A - DSM Deutsche Sammlung von Mikroorganismen (Göttingen) - OD optical density - PHBA poly--hydroxybutyric acid - R Rhodospirillum  相似文献   

9.
Studies were conducted on the oxidation and assimilation of various three-carbon compounds by a gram-positive rod isolated from soil and designated strain R-22. This organism can utilize propane, propionate, or n-propylamine as sole source of carbon and energy. Respiration rates, enzyme assays, and 14CO2 incorporation experiments suggest that propane is metabolized via methyl ketone formation; propionate and n-propylamine are metabolized via the methylmalonyl-succinate pathway. Isocitrate lyase activity was found in cells grown on acetate and was not present in cells grown on propionate or n-propylamine. 14CO2 was incorporated into pyruvate when propionate and n-propylamine were oxidized in the presence of NaAsO2, but insignificant radioactivity was found in pyruvate produced during the oxidation of propane and acetone. The n-propylamine dissimilatory mechanism was inducible in strain R-22, and amine dehydrogenase activity was detected in cells grown on n-propylamine. Radiorespirometer and 14CO2 incorporation studies with several propane-utilizing organisms indicate that the methylmalonyl-succinate pathway is the predominant one for the metabolism of propionate.  相似文献   

10.
Isolated hepatocytes from 24-h-starved rats were used to assess the possible effect of Ahe hypoglycaemic agent 3-mercaptopicolinate on flux through the hepatic pyruvate dehydrogenase complex. Increasing the extraceIIular pyruvate concentration from 1 mM to 2 mM or 5 mM resulted in an increase in flux through pyruvate dehydrogenase and the tricarboxylic acid cycle as measured by14CO2 evolution from [1-14C]pyruvate and [3-14C]pyruvate. Gluconeogenesis was inhibited by 3-mercaptopicolinate from both 1 mM and 2 mM pyruvate, but significant increases in malate and citrate concentrations only occurred in cells incubated with 1 mM pyruvate. Flux through pyruvate dehydrogenase was stimulated by 3-mercaptopicolinate with 1 mM pyruvate but was unaltered with 2 mM pyruvate. Dichloroacetate stimulated flux through pyruvate dehydrogenase with no effect on gluconeogenesis in the presence of I mM pyruvate. There was no effect of 3-mercaptopicolinate, administered in vivo, to 24-h-starved rats on the activity of pyruvate dehydrogenase in freeze-clamped heart or liver tissue, although the drug did decrease blood glucose concentration and increase the blood concentrations of lactate and alanine. Dichloroacetate, administered in vivo to 24-h-starved rats, increased the activity of pyruvate dehydrogenase in freeze-clamped heart and liver, and caused decreases in the blood concentrations of glucose, lactate , and alanine. The results suggest that 3-mercaptopicolinate increases flux through hepatocyte pyruvate dehydrogenase by an indirect mechanism.  相似文献   

11.
Dichloroacetate has effects upon hepatic metabolism which are profoundly different from its effects on heart, skeletal muscle, and adipose tissue metabolism. With hepatocytes prepared from meal-fed rats, dichloroacetate was found to activate pyruvate dehydrogenase, to increase the utilization of lactate and pyruvate without effecting an increase in the net utilization of glucose, to increase the rate of fatty acid synthesis, and to decrease slightly [1-14C]oleate oxidation to 14CO2 without decreasing ketone body formation. With hepatocytes isolated from 48-h-starved rats, dichloroacetate was found to activate pyruvate dehydrogenase, to have no influence on net glucose utilization, to inhibit gluconeogenesis slightly with lactate as substrate, and to stimulate gluconeogenesis significantly with alanine as substrate. The stimulation of fatty acid synthesis by dichloroacetate suggests that the activity of pyruvate dehydrogenase can be rate determining for fatty acid synthesis in isolated liver cells. The minor effects of dichloroacetate on gluconeogenesis suggest that the regulation of pyruvate dehydrogenase is only of marginal importance in the control of gluconeogenesis.  相似文献   

12.
Acetohydroxyacid synthase (AHAS) activity was studied in the green unicellular alga Chlorella emersonii. This activity and its regulation was compared in the algae grown autotrophically and heterotrophically on glucose in the dark. No evidence for the existence of more than one enzyme was found. The activity in crude extracts from either heterotrophically or autotrophically grown cells showed a Km for pyruvate of 9 millimolar, a 22-fold preference for 2-ketobutyrate over pyruvate as the second substrate, 50% inhibition by 0.5 millimolar valine, and 50% inhibition by 0.3 micromolar sulfometuron methyl (SMM). Spontaneous mutants of the alga resistant to SMM were isolated, which appeared to be single gene mutants containing SMM-resistant AHAS activity. Hence, AHAS appears to be the sole direct target site of SMM in C. emersonii. The fact that the mutants had equivalent SMM resistance under auto- and heterotrophic conditions further supports the conclusion that the same enzyme functions under both physiological regimes. The addition of valine and isoleucine leads to partial relief of SMM inhibition of biomass increase, but not of SMM inhibition of cell division.  相似文献   

13.
1. The kinetic and metabolic properties of lactate dehydrogenase isoenzyme LDHx from human sperm cells and rat testes were studied. 2. LDHx shows a sensitivity to inhibition by stilboestrol diphosphate, urea and guanidinium chloride different from that of the LDH-H4 and LDH-M4 isoenzymes. 3. About 10 and 20% of the total lactate dehydrogenase activity of testes and sperm cells respectively were associated with particulate fractions. In sperm cells 11% was localized in the middle piece and 18·8% in the head fraction. LDHx was found in all particulate fractions of sperm cells. The middle piece contained 41·0% of total LDHx activity and showed high succinate dehydrogenase activity. 5. The pH-dependence of lactate/pyruvate and NAD+/NADH concentration ratios were estimated. Lactate dehydrogenase in sperm cells has maximal activity with NADH as coenzyme at pH7·5 and with NADPH as coenzyme at pH6·0. At pH6·0 a 10% greater oxidation of NADPH than of NADH was found. At acid pH lactate hydrogenase may function as an enzyme bringing about transhydrogenation from NADPH to NAD+. 6. In agreement with the stoicheiometry of the lactate de- hydrogenase reaction, the lactate/pyruvate concentration ratio decreased with increasing pH. 7. The lactate/pyruvate and NAD+/NADH concentration ratios were estimated with glucose, fructose and sorbitol as substrates and as a function of time after addition of these substrates. During a 20min. period after the addition of the substrates, changes in lactate/pyruvate and NAD+/NADH concentration ratios were noticed. Increasing concentration of the substrates mentioned gave rise to asymptotic increases in lactate and pyruvate. 8. Sorbitol did not act as a substrate for LDHx. 9. The findings described are consistent with the idea that LDHx is different from other known lactate dehydrogenase isoenzymes, but that it has a metabolic function similar to that of the isoenzymes of other tissues.  相似文献   

14.
In vitro, the pyruvate dehydrogenase complex is sensitive to product inhibition by NADH and acetyl-coenzyme A (CoA). Based upon Km and Ki relationships, it was suggested that NADH can play a primary role in control of pyruvate dehydrogenase complex activity in vivo (JA Miernyk, DD Randall [1987] Plant Physiol 83:306-310). We have now extended the in vitro studies of product inhibition by assaying pyruvate dehydrogenase complex activity in situ, using purified intact mitochondria from green pea (Pisum sativum) seedlings. In situ activity of the pyruvate dehydrogenase complex is inhibited when mitochondria are incubated with malonate. In some instances, isolated mitochondria show an apparent lack of coupling during pyruvate oxidation. The inhibition by malonate, and the apparent lack of coupling, can both be explained by an accumulation of acetyl-CoA. Inhibition could be alleviated by addition of oxalacetate, high levels of malate, or l-carnitine. The CoA pool in nonrespiring mitochondria was approximately 150 micromolar, but doubled during pyruvate oxidation, when 60 to 95% of the total was in the form of acetyl-CoA. Our results indicate that in situ activity of the mitochondrial pyruvate dehydrogenase complex can be controlled in part by acetyl-CoA product inhibition.  相似文献   

15.
THE CONTROL OF PYRUVATE DEHYDROGENASE IN ISOLATED BRAIN MITOCHONDRIA   总被引:13,自引:11,他引:2  
Abstract— The activity and control of the pyruvate dehydrogenase complex in isolated rat brain mitochondria has been studied. The activity of this complex in mitochondria as isolated from normal fed rats was 78 ± 10nmol.min−1 mg mitochondrial protein−1 (n = 18) which represented 70% of the total pyruvate dehydrogenase activity. The pyruvate dehydrogenase in isolated brain mitochondria could be inactivated by incubation in the presence of ATP, oligomycin and NaF. The rate of inactivation was dependent upon the added ATP concentration but inactivation below approx 30% of the total pyruvate dehydrogenase activity could not be achieved. The inactivation of pyruvate dehydrogenase in brain mitochondria was inhibited by pre-incubation with pyruvate. Reactivation of inactivated pyruvate dehydrogenase in rat brain mitochondria was incomplete in the incubation medium unless 10mM-Mg2++ 1 mM-Ca2+ were added; NaF, however, prevented any reactivation (Fig. 4). It is concluded that the pyruvate dehydrogenase complex in rat brain mitochondria is controlled in a manner similar to that in other tissues, and that pyruvate protection of pyruvate dehydrogenase activity may be important in maintaining brain energy metabolism.  相似文献   

16.
Mesophyll protoplasts and bundle sheath strands were isolated from maize leaves. Light microscopic observation showed the preparations were pure and without cross contamination. Protein blot analysis of mesophyll and bundle sheath cell soluble protein showed that the concentration of pyruvate orthophosphate dikinase (EC 2.7.9.1) is about one-tenth as much in the bundle sheath cells as in mesophyll cells, but about eight times greater than that found in wheat leaves, on the basis of soluble protein. Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was barely detectable in the bundle sheath cells, while ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and NADP-dependent malic enzyme (EC 1.3.1.37) were exclusively present in the bundle sheath cells and were absent in the mesophyll cells. Whereas pyruvate, Pi dikinase was previously considered localized only in mesophyll cells of C4 plants, these results clearly demonstrate the presence of appreciable quantities of the enzyme in the bundle sheath cells of the C4 species maize.  相似文献   

17.
Lipid peroxidation and the degradation of cytochrome P-450 heme   总被引:8,自引:0,他引:8  
The enzyme content and functional capacities of mesophyll chloroplasts from Atriplex spongiosa and maize have been investigated. Accompanying evidence from graded sequential blending of leaves confirmed that mesophyll cells contain all of the leaf pyruvate, Pi dikinase, and PEP carboxylase activities and a major part of the adenylate kinase and pyrophosphatase. 3-Phosphoglycerate kinase, NADP glyceraldehyde-3-P-dehydrogenase, and triose-P isomerase activities were about equally distributed between mesophyll and bundle sheath cells but other Calvin cycle enzymes were very largely or solely located in bundle sheath cells. In A. spongiosa extracts of predominantly mesophyll origin the proportion of the released pyruvate, Pi dikinase, adenylate kinase, pyrophosphatase, 3-phosphoglycerate kinase, and NADP glyceraldehyde-3-P dehydrogenase retained in pelleted chloroplasts was similar but varied between 30 and 80% in different preparations. The proportion of these enzymes and NADP malate dehydrogenase recovered in maize chloroplast preparations varied between 15 and 35%. Washed chloroplasts retained most of the activity of these enzymes but ribulose diphosphate carboxylase and other Calvin cycle enzyme activities were undetectable. Among the evidence for the integrity of these chloroplasts was their capacity for light-dependent conversion of pyruvate to phosphoenolpyruvate and O2 evolution when 3-phosphoglycerate or oxaloacetate were added. These results support our previous conclusions about the function of mesophyll chloroplasts in C4-pathway photosynthesis and clearly demonstrate that they lack Calvin cycle activity.  相似文献   

18.
Heliobacteria are a group of anoxygenic phototrophs that can grow photoheterotrophically in defined minimal media on only a limited range of organic substrates as carbon sources. In this study the mechanisms which operate to assimilate carbon and the routes employed for the biosynthesis of cellular intermediates were investigated in a newHeliobacterium strain, HY-3. This was achieved using two approaches (1) by measuring the activities of key enzymes in cell-free extracts and (2) by the use of13C nuclear magnetic resonance (NMR) spectroscopy to analyze in detail the labelling pattern of amino-acids of cells grown on [13C] pyruvate and [13C] acetate.Heliobacterium strain HY-3 was unable to grow autotrophically on CO2/H2 and neither (ATP)-citrate lyase nor ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPcase) were detectable in cell-free extracts. The enzyme profile of pyruvate grown cells indicated the presence of a pyruvate:acceptor oxidoreductase at high specific activity which could convert pyruvate to acetyl-Coenzyme A. No pyridine nucleotide dependent pyruvate dehydrogenase complex activity was detected. Of the citric-acid cycle enzymes, malate dehydrogenase, fumarase, fumarate reductase and an NADP-specific isocitrate dehydrogenase were readily detectable but no aconitase or citrate synthase activity was found. However, the labelling pattern of glutamate in long-term 2-[13C] acetate incorporation experiments indicated that a mechanism exists for the conversion of carbon from acetyl-CoA into 2-oxoglutarate. A 2-oxoglutarate:acceptor oxidoreductase activity was present which was also assayable by isotope exchange, but no 2-oxoglutarate dehydrogenase complex activity could be detected. Heliobacteria appear to use a type of incomplete reductive carboxylic acid pathway for the conversion of pyruvate to 2-oxoglutarate but are unable to grow autotrophically using this metabolic route due to the absence of ATP-citrate lyase.  相似文献   

19.
C. W. Baldry  C. Bucke  J. Coombs  D. Gross 《Planta》1970,94(2):107-123
Summary Sugar cane chloroplasts isolated in simple media possessed little photochemical activity, but showed rapid O2 uptake, independent of light. A similar rapid consumption of O2 was observed with brei prepared from cane leaves. This was not observed in brei of spinach leaves. Authentic polyphenols and cane leaf extracts stimulated the consumption of O2 by cane preparations and inhibited photosynthesis in chloroplasts isolated from spinach. Chlorogenic acid and caffeic acid were the major o-diphenols in extracts of cane leaves. These compounds inhibited reactions associated with CO2 fixation by the photosynthetic carbon reduction cycle. Assimilation of CO2 due to phosphoenol pyruvate carboxylase activity was less sensitive to inhibition by o-diphenols. Mechanisms are discussed whereby o-diphenols may inhibit cane chloroplasts during their isolation.  相似文献   

20.
Cell extracts of Pseudomonas aeruginosa strain PAO were found to contain pyruvate carboxylase activity. Specific activities were minimal when cells were grown on Casamino Acids, acetate, or succinate, but were three- to fourfold higher when cells were grown in glucose, gluconate, glycerol, lactate, or pyruvate minimal media. The reaction in crude cell extracts and in partially purified preparations was dependent on pyruvate, adenosine 5'-triphosphate, and Mg(2+), but was not affected by either the presence or absence of acetyl coenzyme A. Activity was nearly totally inhibited by avidin and this inhibition was substantially blocked by free biotin in incubation mixtures. Cell extracts were shown to fix (14)CO(2) in a reaction that had these same characteristics. Eight pleiotropic, carbohydrate-negative mutant strains of the organism were isolated after nitrosoguanidine mutagenesis. Each mutant strain grew normally in acetate, succinate, and citrate minimal media but failed to utilize glucose, gluconate, 2-ketogluconate, mannitol, glycerol, lactate, and pyruvate as sole sources of carbon and energy. These strains were found by quantitative transductional analysis with phage F116 to form a single linkage group. Cell extracts of each mutant strain were either lacking or severely deficient in pyruvate carboxylase activity. Spontaneous revertants of five of the eight strains were isolated and found to recover simultaneously both pyruvate carboxylase activity and the ability to utilize each of the C(6) and C(3) compounds. A second linkage group of similar mutant strains that grew on the C(3) compounds was found to contain normal levels of pyruvate carboxylase activity, but each strain was deficient in an enzyme of the Entner-Doudoroff pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号