首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differentiating imaginal hypodermal cells of Drosophila melanogaster form adult cuticle during the second half of the pupal stage (about 40 to 93 hr postpupariation). A group of proteins with molecular weights of 23,000, 20,000, and 14,000 is identified as putative major wing cuticle proteins with the following biological properties: These proteins are abundant components of cuticle and are major synthetic products of cuticle-secreting hypodermal cells. They are leucine-rich and methionine-free and are the most prominent proteins of this type synthesized by wing hypoderm at 65 hr, during the period of procuticle formation. Electron microscopic autoradiography shows that leucine-rich, methionine-free proteins specifically localize to the apical cell surface and newly secreted cuticle of 65-hr wing cells. This strongly suggests the export of these proteins to the cuticle. Lastly, these proteins undergo a reduction in extractability just after eclosion, during the period of cuticle protein crosslinking (sclerotization). The synthesis of these major hypoderm proteins is temporally regulated in development. In wing cells, the 14-kDa proteins are synthesized first, from 53 to 78 hr, and the 20- and 23-kDa proteins are synthesized from 63 to 93 hr. The pattern of synthesis for these proteins is similar in abdominal cells but delayed by 6 to 10 hr. Two-dimensional gel electrophoresis shows that each of the 23-, 20-, and 14-kDa size classes contains at least two component polypeptides. Patterns of protein synthesis in cells of the imaginal hypodermis are regulated in a precise temporal sequence during the production of adult cuticle. Their study yields a useful system for the analysis of molecular events in gene control and cell differentiation.  相似文献   

2.
The construction of cell hairs (trichomes) on the wings of Drosophila occurs in synchrony on 30,000 cells over a period of about 20 hr. Changes in both morphology and patterns of protein synthesis occur rapidly during this time period. In this report we describe the use of stress-induced (heat shock) abnormalities in morphogenesis to provide further details on the stepwise processes of differentiation within single wing cells. A cartoon summary of the overall process and a discussion of some possible mechanisms is included.  相似文献   

3.
The South East Asian arboreal Formicine Echinopla melanarctos, as well as some other members of this genus possess a cuticular structure unique in ants, the pedestal hairs. In E. melanarctos, about 700 pedestal hairs are situated on the dorsal and lateral surfaces of the head, the alitrunk, the petiole and the gaster. They are arranged in a polygon-like figuration. On the summit of each of the up to 200-μm high pedestals, a single central hair inserts. This hair (up to 500-μm long) is innervated by a single bipolar mechanosensitive sensory cell. The lumen of each tube-like pedestal contains (1) epithelial cells (2) the sensory cell and the auxiliary cells of the central hair and (3) the long efferent ductules of up to ten isolated bicellular glandular units. Each glandular unit is composed of a secretory glandular cell and a duct cell, all of which are located at the base of a pedestal. The cytoplasm of a glandular cell contains a well-developed end apparatus and is characterised by stacks of smooth and granular endoplasmic reticulum, numerous polyribosomes, a lot of mitochondria and some up to 5-μm large secretory vesicles. The secretion of the gland cells is released on the apex of the pedestal wall via small pores. Approximately 30 μm below their summit, some pedestals possess additionally (up to six) mechanosensitive hairs that are arranged ray-like. We suppose that the pedestal hairs are important in nest-space protection and find that only in ants with high pedestals on the head (Echinopla melanarctos and Echinopla pallipes), the compound eyes are stalked thus overtopping the pedestals.  相似文献   

4.
Ren N  Zhu C  Lee H  Adler PN 《Genetics》2005,171(2):625-638
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular and tissue level morphogenesis. We carried out a gene expression screen to identify candidate genes that functioned in wing and wing hair morphogenesis. Pupal wing RNA was isolated from tissue prior to, during, and after hair growth and used to probe Affymetrix Drosophila gene chips. We identified 435 genes whose expression changed at least fivefold during this period and 1335 whose expression changed at least twofold. As a functional validation we chose 10 genes where genetic reagents existed but where there was little or no evidence for a wing phenotype. New phenotypes were found for 9 of these genes, providing functional validation for the collection of identified genes. Among the phenotypes seen were a delay in hair initiation, defects in hair maturation, defects in cuticle formation and pigmentation, and abnormal wing hair polarity. The collection of identified genes should be a valuable data set for future studies on hair and bristle morphogenesis, cuticle synthesis, and planar polarity.  相似文献   

5.
6.
We present evidence to show that differentiation in wing cells to produce hairs is synchronous over the distal 90% of the wing surface (approximately 28,000 cells). In spite of this synchrony within such a large area a temporal gradient exists between zones (in general anterior to posterior) on the animal surface with rather sharp boundaries in between. In order to evaluate the basis for the gradient we studied two mutants which carry different combinations of the genes of the bithorax complex. These were examined with respect to the temporal aspects of sensitivity to heat shock induction of the multihair phenocopy on wings and the time of initiation of the program of protein synthesis that is related to hair formation. Results show that the gradient observed is based on predetermined properties within specific areas of tissue rather than on the position of the cells in the animal.  相似文献   

7.
Results of light and electron microscopy and preliminary ultracytochemical studies of the staminal hairs of Bulbine inflata at different stages of development are reported here. The staminal filaments are covered with yellow, unicellular, linear, erecto-patent hairs. These staminal hairs arise directly as single cell outgrowths from epidermal cells of the filament. The surface of each hair is patterned with helical wall thickenings in an anticlockwise direction. This wall is covered by a thick folded cuticle, and formed of a loosely fibrillar cellulose layer. The hair cell possesses a cytoplasm rich in organelles. Especially ribosomes are abundant. Plastids contain large starch grains and peripheral lipid droplets. The smooth endoplasmic reticulum cisternae (SER) encircle the plastids and mitochondria; it is extended in the cytoplasm along the hair length. These hairs have functions in flower pollination attracting pollinators visually, secreting specific substances, providing increased surface area, protecting the filaments and being involved in their movement and vibration.  相似文献   

8.
Yan J  Huen D  Morely T  Johnson G  Gubb D  Roote J  Adler PN 《Genetics》2008,180(1):219-228
The frizzled signaling/signal transduction pathway controls planar cell polarity (PCP) in both vertebrates and invertebrates. Epistasis experiments argue that in the Drosophila epidermis multiple wing hairs (mwh) acts as a downstream component of the pathway. The PCP proteins accumulate asymmetrically in pupal wing cells where they are thought to form distinct protein complexes. One is located on the distal side of wing cells and a second on the proximal side. This asymmetric protein accumulation is thought to lead to the activation of the cytoskeleton on the distal side, which in turn leads to each cell forming a single distally pointing hair. We identified mwh as CG13913, which encodes a novel G protein binding domain–formin homology 3 (GBD–FH3) domain protein. The Mwh protein accumulated on the proximal side of wing cells prior to hair formation. Unlike planar polarity proteins such as Frizzled or Inturned, Mwh also accumulated in growing hairs. This suggested that mwh had two temporally separate functions in wing development. Evidence for these two functions also came from temperature-shift experiments with a temperature-sensitive allele. Overexpression of Mwh inhibited hair initiation, thus Mwh acts as a negative regulator of the cytoskeleton. Our data argued early proximal Mwh accumulation restricts hair initiation to the distal side of wing cells and the later hair accumulation of Mwh prevents the formation of ectopic secondary hairs. This later function appears to be a feedback mechanism that limits cytoskeleton activation to ensure a single hair is formed.  相似文献   

9.
10.
《The Journal of cell biology》1996,135(5):1277-1289
The wing of Drosophila melanogaster is covered by an array of distally pointing hairs. A hair begins as a single membrane outgrowth from each wing epithelial cell, and its distal orientation is determined by the restriction of outgrowth to a single distal site on the cell circumference (Wong, L., and P. Adler. 1993. J. Cell Biol. 123:209- 211.). We have examined the roles of Cdc42 and Rac1 in the formation of wing hairs. We find that Cdc42 is required for localized actin polymerization in the extending hair. Interfering with Cdc42 activity by expression of a dominant negative protein abolishes both localized actin polymerization and hair outgrowth. In contrast, Rac1 is important for restricting the site at which hairs grow out. Cells expressing the dominant negative Rac1N17 fail to restrict outgrowth to a single site and give rise to multiple wing hairs. This polarity defect is associated with disturbances in the organization of junctional actin and also with disruption of an intricate microtubule network that is intimately associated with the junctional region. We also find that apical junctions and microtubules are involved in structural aspects of hair outgrowth. During hair formation, the apical microtubules that point distally elongate and fill the emerging wing hair. As the hair elongates, junctional proteins are reorganized on the proximal and distal edges of each cell.  相似文献   

11.
The fine structure of hairs in the most ancient extant mammals, the monotremes, is not known. The present study analyzes the ultrastructure and immunocytochemistry for keratins, trichohyalin, and transglutaminase in monotreme hairs and compares their distribution with that present in hairs of the other mammals. The overall ultrastructure of the hair and the distribution of keratins is similar to that of marsupial and placental hairs. Acidic and basic keratins mostly localize in the outer root sheath. The inner root sheath (IRS) comprises 4-8 cell layers in most hairs and forms a tile-like sheath around the hair shaft. No cytological distinction between the Henle and Huxley layers is seen as cells become cornified about at the same time. Externally to the last cornified IRS cells (homologous to the Henle layer), the companion layer contains numerous bundles of keratin. Occasionally, some granules in the companion layer show immunoreactivity for the trichohyalin antibody. This further suggests that the IRS in monotremes is ill-defined, as the companion layer of placental hairs studied so far does not express trichohyalin. A cross-reactivity with an antibody against sheep trichohyalin is present in the IRS of monotremes, suggesting conserved epitopes across mammalian trichohyalin. Trichohyalin granules in the IRS consist of a framework of immunolabeled coarse filaments of 10-12 nm. The latter assume a parallel orientation and lose the immunoreactivity in fully cornified cells. Transglutaminase immunolabeling is diffuse among trichohyalin granules and among the parallel 10-12 nm filaments of maturing inner root cells. Transglutaminase is present where its substrate, trichohyalin, is modified as matrix protein. Cornification of IRS is different from that of hair fiber cuticle and from that of the cornified layer of the epidermis above the follicle. The different consistency among cuticle, IRS, and corneous layer of the epidermis determines separation between hair fiber, IRS, and epidermis. This allows the hair to exit on the epidermal surface after shedding from the IRS and epidermis. Based on comparative studies of reptilian and mammalian skin, a speculative hypothesis on the evolution of the IRS and hairs from the skin of synapsid reptiles is presented.  相似文献   

12.
The course of development of the glandular and non-glandular hairs of Avicennia marina was found to be the same up to the three-celled stage. The further cell divisions of the two types of developing hairs differed in their orientation. In the non-glandular hair the cells continued to divide transversely, whereas in the glandular hair the uppermost of the three cells divided longitudinally.
In the mature hairs of both types, the peripheral wall of the cell just above the basal cell was heavily cutinized. The existence of narrow canals in the cuticle of the secretory cells of the glandular hairs was confirmed. The homology of the glandular and non-glandular hairs is discussed and it is concluded that the two types are phylogenetically related.  相似文献   

13.
In order to study the mechanism of action of androgen on pubic and scalp hair, we established these and skin epithelial cells in culture. Because 5 alpha-reductase has been suspected of playing a role in hair growth, we tested the possibility that these cells differ in their pattern of androgen metabolism. Furthermore, we tested the hypothesis that androgen exerts its distinctive effects on these hairs by differentially regulating keratin or DNA synthesis. Anagen hairs of men and women were plucked from the pubis or scalp vertex and were studied using an epithelial cell culture technique. DHT formation from [3H]T cultured skin cells increased in the following order: epidermal less than scalp less than pubic less than fibroblasts = 0.8:2.8:8.1:71%/mg DNA/min, respectively. Androstanediols were minor [3H]DHT metabolites of all these skin cell types. The only feature that distinguished among the cultured epithelial cells was the ratio of apparent 5 alpha-reductase (5 alpha-R) to 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) activity: this was significantly greater (P less than 0.05) in cultured pubic hair cells than in scalp hair or epidermal cells. Cultured scalp and pubic hair cells resembled freshly plucked hair follicle cells in their keratin pattern. 46, 50, 56 and 58 kdalton bands constituted 99% of the total keratins. This keratin pattern and the polygonal cell shape were also similar to that of cultured epidermal cells. However, this keratin pattern was distinctly different from that of hair shafts which have 53 and 63 kdalton keratins. Dihydrotestosterone did not affect the keratin pattern, pattern of incorporation of [35S]cysteine or [35S]methionine, or rates of protein synthesis or cell proliferation in cultured hair cells. Although the higher apparent 5 alpha-R/17 beta-HSD ratio of cultured pubic than of scalp hairs is compatible with modulation of hair development by androgen, these studies militate against the possibility that androgens directly affect hair cell proliferation or protein synthesis in pubic or scalp hair.  相似文献   

14.
紫露草雄蕊毛是由多个单细胞连接而成的,如无特殊的细胞结构,是无法抵御外界的严酷条件、行使其功能的。以扫描电镜法、透射电镜法及细胞化学染色法对紫露草雄蕊毛的结构进行了观察。构成雄蕊毛的细胞是一特化的细胞。周缘的平周壁坚厚,垂周壁薄,外覆角质与蜡质的疏水层。壁表呈条棱状突起,条棱形态依细胞部位、形状和表面积大小而别。  相似文献   

15.
The cuticular exoskeleton of arthropods is a composite material comprising well-separated layers that differ in function and molecular constituents. Epidermal cells secrete these layers sequentially, synthesizing components of distal cuticle layers before proximal ones. Could the order of synthesis and secretion be sufficient to account for the precision with which cuticle components localize to specific layers? We addressed this question by studying the spatial restriction of melanization in the Drosophila wing. Melanin formation is confined to a narrow layer within the distal procuticle. Surprisingly, this tight localization depends on the multi-ligand endocytic receptor Megalin (Mgl). Mgl acts, in part, by promoting endocytic clearance of Yellow. Yellow is required for black melanin formation, and its synthesis begins as cuticle is secreted. Near the end of cuticle secretion, its levels drop precipitously by a mechanism that depends on Mgl and Rab5-dependent endocytosis. In the absence of Mgl, Yellow protein persists at higher levels and melanin granules form ectopically in more proximal layers of the procuticle. We propose that the tight localization of the melanin synthesis machinery to the distal procuticle depends not only on the timing of its synthesis and secretion, but also on the rapid clearance of these components before synthesis of subsequent cuticle layers.  相似文献   

16.
The cuticular surface of Drosophila is decorated by parallel arrays of polarized structures such as hairs and sensory bristles; for example, on the wing each cell produces a distally pointing hair. These patterns are termed 'tissue polarity'. Several genes are known whose activity is essential for the development of normal tissue polarity. Mutations in these genes alter the orientation of the hair or bristle with respect to neighboring cells and the body as a whole. The phenotypes of mutations in these genes allows them to be placed in three phenotypic groups. Based on their behavior in genetic mosaics, it has proved possible to determine that individual genes are required either for the generation of an intercellular polarity signal and/or the transduction of that signal to the cytoskeleton.  相似文献   

17.
Kuhn R  Meyer W 《Zoological science》2010,27(10):826-829
The cuticle structure of the wool hairs (secondary hairs) of six otter species was examined by scanning electron microscopy to clarify the specific function of this hair type in the Lutrinae. The species studied were chosen according to the different genera, climatic regions, and degrees of association to water of the Lutrinae. Independent of their preferred habitats, the cuticle of every wool hair examined exhibited in all animals a rather similar shape and arrangement of the scales. This specific adaptive feature allows a flexible interlocking of adjacent wool hairs, which also helps to form thin wool hair bundles that surround small oval shaped spaces. Thus, the trapping of an effective insulating air layer is facilitated and heat loss from the body is reduced.  相似文献   

18.
Root hairs are tubular outgrowths specifically differentiated from epidermal cells in a differentiation zone. The formation of root hairs greatly increases the surface area of a root and maximizes its ability to absorb water and inorganic nutrients essential for plant growth and development. Root hair development is strictly regulated by intracellular and intercellular signal communications. Cell surface-localized receptor-like protein kinases(RLKs) have been shown to be important components in these cellular processes. In this review,the functions of a number of key RLKs in regulating Arabidopsis root hair development are discussed, especially those involved in root epidermal cell fate determination and root hair tip growth.  相似文献   

19.
ABSTRACT. The fine structure and the behavioural threshold for vibration sensitivity of the eight thoracic filiform hairs of Barathra brassicae caterpillars were investigated through an intermoult/moult cycle. Associated with each filiform hair is one bipolar sensory cell and three enveloping cells. The outer dendritic segment terminates in an ecdysial canal in the hair base and a tubular body lies at its distal end. Shortly before apolysis the dendrite elongates. By this means the connection between the sensory cell and the old cuticular apparatus is maintained while the epithelium and the old thoracic cuticle are separating. The new cuticular apparatus of the filiform hair is formed in the second half of the larval stage by the three enveloping cells. A second tubular body in the elongated outer dendritic segment is formed at the base of the replacement hair 10 h before next ecdysis, so that the new hair functions as soon as ecdysis is completed, the old cuticular apparatus with the old tubular bodies being torn away with the exuvia during ecdysis. Sensitivity to a 300 Hz tone was tested in the standing wave of a Kundt's tube. Throughout most of the larval instar the threshold was 2.0 ± 0.3 μm particle displacement amplitude until 1–2h before ecdysis when it rose to 6.8 ± 1.3 μm and at 10–30 min before the beginning of ecdysis no reaction to sound could be detected. Once the old cuticle was shed maximum sensitivity returned as soon as the replacement hairs were erect. The sensilla are therefore physiologically functional at all developmental stages except for 30–60 min during actual ecdysis.  相似文献   

20.
Summary The dorsal integument of the girdle of the chiton Mopalia muscosa is covered by a chitinous cuticle about 0.1 mm in thickness. Within the cuticle are fusiform spicules composed of a central mass of pigment granules surrounded by a layer of calcium carbonate crystals. Tapered, curved chitinous hairs with a groove on the mesial surface pass through the cuticle and protrude above the surface. The spicules are produced by specialized groups of epidermal cells called spiniferous papillae and the hairs are produced by trichogenous papillae. Processes of pigment cells containing green granules are scattered among the cells of each type of papilla and among the common epidermal cells.The wall or cortex of each hair is composed of two layers. The cortex surrounds a central medulla that contains matrix material of low density and from 1 to 20 axial bundles of dendrites. The number of bundles within the medulla varies with the size of the hair. Each bundle contains from 1 to 25 dendrites ensheathed by processes of supporting cells. The dendrites and supporting sheath arise from epidermal cells of the central part of the papilla. At the base of each trichogenous papilla are several nerves that pass into the dermis. Two questions remain unresolved. The function of the hairs is unknown, and we have not determined whether the sensory cells are primary sensory neurons or secondary sensory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号