首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Starvation caused a marked increase in putrescine content in mammary gland of lactating rats, together with a marked decrease in activity of ornithine decarboxylase and appearance of measurable ornithine decarboxylase antizyme. 2. Refeeding for 5 h caused disappearance of free antizyme and ornithine decarboxylase activity returned to the value in fed animals. Putrescine concentration remained elevated. 3. There was no significant change in nucleic acid content of mammary gland from starved rats, but spermidine and spermine contents increased significantly. 4. Refeeding for 5 h returned the spermidine content of mammary glands to 'fed' values, and significantly decreased the content of spermine, although it did not reach control values. Thus changes in polyamine content of mammary gland in starved rats are clearly dissociated from changes in either RNA content or activities of polyamine-synthetic decarboxylases. 5. Starvation caused a fall in the content of spermidine in liver, with no change in spermine content. Refeeding for 5 h returned the spermidine content to 'fed' values.  相似文献   

2.
A monoclonal antibody to rat liver ornithine decarboxylase   总被引:5,自引:0,他引:5  
A monoclonal antibody was obtained against rat liver ornithine decarboxylase by using hybridoma technology with a small amount of partially purified enzyme. The antibody, IgG1 of kappa-type, was affinity-purified to homogeneity from culture supernatants of hybridoma cells. While the antibody had no inhibitory effect on ornithine decarboxylase activity when tested alone, it precipitated up to 87 units (60 ng) of the enzyme per microgram in the presence of formalin-fixed Staphylococcus aureus Cowan I bacteria. Immunoadsorption on a column of the monoclonal antibody-Sepharose 4B was shown to be useful for the removal of ornithine decarboxylase from antizyme inhibitor preparations, an essential procedure for the accurate assay of either ornithine decarboxylase-antizyme complex or antizyme inhibitor. It was also shown that antizyme could be affinity-purified by using a column of the monoclonal antibody-Affi-Gel 10 to which ornithine decarboxylase had been bound.  相似文献   

3.
In rat hepatoma tumor (HTC) cells 1,3 diaminopropane and cadaverine induced the ornithine decarboxylase antizyme as well as the end product of the ornithine decarboxylase reaction putrescine. Although at equal exogenous concentrations (10?3M) the two non-physiological diamines penetrated the cells as effectively as putrescine; they decreased cellular ornithine decarboxylase considerably less rapidly than the naturally present diamine. Cell extracts treated with high concentrations of 1,3 diaminopropane and putrescine, and which as a result had a high specific activity of ornithine decarboxylase antizyme, were chromatographed on a superfine Sephadex G-75 column in the presence of 250 mM NaCl. No ornithine decarboxylase-antizyme complex could be detected indicating the original decrease of ornithine decarboxylase in the cells was likely due to some mechanism other than antizyme. These results indicate that 1,3 diaminopropane and cadaverine probably can act on ornithine decarboxylase, like putrescine, by two distinct regulatory mechanisms.  相似文献   

4.
A radioimmunoassay for ornithine decarboxylase was used to study the regulation of this enzyme in rat liver. The antiserum used reacts with ornithine decarboxylase from mouse, human or rat cells. Rat liver ornithine decarboxylase enzyme activity and enzyme protein (as determined by radioimmunoassay) were measured in thioacetamide-treated rats at various times after administration of 1,3-diaminopropane. Enzyme activity declined rapidly after 1,3-diaminopropane treatment as did the amount of enzyme protein, although the disappearance of enzyme activity slightly preceded the loss of immunoreactive protein. The loss of enzyme protein after cycloheximide treatment also occurred rapidly, but was significantly slower than that seen with 1,3-diaminopropane. When 1,3-diaminopropane and cycloheximide were injected simultaneously, the rate of disappearance of enzyme activity and enzyme protein was the same as that seen with cycloheximide alone. These results show that the rapid loss in enzyme activity after 1,3-diaminopropane treatment is primarily due to a loss in enzyme protein and that protein synthesis is needed in order for 1,3-diaminopropane to exert its full effect. A macromolecular inhibitor of ornithine decarboxylase that has been termed antizyme is induced in response to 1,3-diaminopropane, but our results indicate that the loss of enzyme activity is not due to the accumulation of inactive ornithine decarboxylase-antizyme complexes. It is possible that the antizyme enhances the degradation of the enzyme protein. Control experiments demonstrated that the antiserum used would have detected any inactive antizyme-ornithine decarboxylase complexes present in liver since addition of antizyme to ornithine decarboxylase in vitro did not affect the amount of ornithine decarboxylase detected in our radioimmunoassay. Anti-(ornithine decarboxylase) antibodies may be useful in the purification of antizyme since the antizyme-ornithine decarboxylase complex can be immunoprecipitated, and antizyme released from the precipitate with 0.3 M-NaCl.  相似文献   

5.
1. Starvation caused a marked decrease in the activity of ornithine decarboxylase in mammary gland, together with a lesser decrease in the activity of S-adenosylmethionine decarboxylase and a marked fall in milk production. Liver ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were unaffected. 2. Refeeding for 2.5 h was without effect on ornithine decarboxylase in mammary gland, but it returned the S-adenosylmethionine decarboxylase activity in mammary gland to control values and elevated both ornithine decarboxylase and S-adenosylmethionine decarboxylase in liver. 3. Refeeding for 5 h returned the activity of ornithine decarboxylase in mammary gland to fed-state values and resulted in further increases in S-adenosylmethionine decarboxylase in mammary gland and liver and in ornithine decarboxylase in liver. 4. Prolactin deficiency in fed rats resulted in decreased milk production and decreased activity of ornithine decarboxylase in mammary gland. The increase in ornithine decarboxylase activity normally seen after refeeding starved rats for 5 h was completely blocked by prolactin deficiency. 5. In fed rats, injection of streptozotocin 2.5 h before death caused a decrease in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase in mammary gland, which could be reversed by simultaneous injection of insulin. Insulin deficiency also prevented the increase in S-adenosylmethionine decarboxylase in liver and mammary gland normally observed after refeeding starved rats for 2.5 h.  相似文献   

6.
A protein inhibiting a protein inhibitor (antizyme) to ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) (ODC), antizyme inhibitor, was purified from the liver cytosol of thioacetamide-treated rats by procedures including antizyme affinity chromatography. Overall purification was roughly estimated to be about 17,000,000-fold and recovery was about 2.4%. The purified preparation showed one major protein band and a faint band corresponding in mobility to molecular weights of 51,000 and 53,500, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Judging from the ornithine decarboxylase activity of the final preparation, the faint band may be ornithine decarboxylase. The apparent molecular weight of antizyme inhibitor estimated by gel filtration on Sephacryl S-200 was approx. 62,000, indicating that antizyme inhibitor may be composed of a single polypeptide chain. In order to examine the question of whether antizyme inhibitor is a protein derived from ornithine decarboxylase, an inactive ornithine decarboxylase, in an immunotitration study and analysis of the binding to antizyme were investigated. The results indicate that antizyme inhibitor may be a protein distinct from ornithine decarboxylase.  相似文献   

7.
Antizyme to ornithine decarboxylase (ODC) and ODC-antizyme complex were both present in liver cytosols of starved rats. The antizyme was identified by its molecular weight, kinetic properties, formation of a complex with ODC, and reversal of its inhibition by antizyme inhibitor. The average amount of antizyme in liver cytosols of starved rats was 0.1 unit/mg of protein, roughly corresponding to basal hepatic ODC activity in rats fed ad libitum. The presence of ODC-antizyme complex was detected by using antizyme inhibitor. These results indicate that antizyme participates in the regulation of ODC activity in vivo under physiological conditions.  相似文献   

8.
This review considers the role of antizyme, of amino acids and of protein synthesis in the regulation of polyamine biosynthesis.The ornithine decarboxylase of eukaryotic ceils and ofEscherichia coli coli can be non-competitively inhibited by proteins, termed antizymes, which are induced by di-and poly- amines. Some antizymes have been purified to homogeneity and have been shown to be structurally unique to the cell of origin. Yet, the E. c o l i antizyme and the rat liver antizyme cross react and inhibit each other's biosynthetic decarboxylases. These results indicate that aspects of the control of polyamine biosynthesis have been highly conserved throughout evolution.Evidence for the physiological role of the antizyme in mammalian cells rests upon its identification in normal uninduced cells, upon the inverse relationship that exists between antizyme and ornithine decarboxylase as well as upon the existence of the complex of ornithine decarboxylase and antizyme in vivo. Furthermore, the antizyme has been shown to be highly specific; its Keq for ornithine decarboxylase is 1.4 x 1011 M-1. In addition, mammalian ceils contain an anti-antizyme, a protein that specifically binds to the antizyme of an ornithine decarboxylase-antizyme complex and liberates free ornithine decarboxylase from the complex. In B. coli , in which polyamine biosynthesis is mediated both by ornithine decarboxylase and by arginine decarboxylase, three proteins (one acidic and two basic) have been purified, each of which inhibits both these enzymes. They do not inhibit the biodegradative ornithine and arginine decarboxylases nor lysine decarboxylase. The two basic inhibitors have been shown to correspond to the ribosomal proteins S20/L26 and L34, respectively. The relationship of the acidic antizyme to other known B. coli proteins remains to be determined.  相似文献   

9.
A macromolecular inhibitor to ornithine decarboxylase (ODC) present in mouse brain was identified as ODC antizyme [Fong, Heller & Canellakis (1976) Biochim. Biophys. Acta 428, 456-465; Heller, Fong & Canellakis (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 1858-1862] on the basis of kinetic properties, Mr and reversal of its inhibition by antizyme inhibitor. The brain antizyme, however, did not cross-react immunochemically with any of seven monoclonal antibodies to rat liver antizyme. ODC activity in mouse brain rapidly decreased after birth, in parallel with putrescine content, and almost disappeared by 3 weeks of age. Free antizyme activity appeared shortly after birth and increased gradually, whereas ODC-antizyme complex already existed at birth and then gradually decreased. Thus total amount of antizyme remained about the same throughout the developmental period in mouse brain. In addition to ODC-antizyme complex, inactive ODC protein was detected by radioimmunoassay in about the same level as the complex at 3 weeks of age. Upon cycloheximide treatment, both free ODC activity and ODC-antizyme complex rapidly disappeared, although free antizyme and the inactive ODC protein were both quite stable.  相似文献   

10.
Ornithine decarboxylase antizyme is a unique inhibitory protein induced by polyamines and involved in the regulation of ornithine decarboxylase. A cDNA was isolated from a rat liver cDNA library by the screening with monoclonal antibodies to rat liver antizyme as probes. The expression products of the cDNA in bacterial systems inhibited rat ornithine decarboxylase activity in a manner characteristic of antizyme and rabbit antisera raised against its direct expression product reacted to rat liver antizyme, confirming the authenticity of the cDNA. On RNA blot analysis with the cDNA probe, an antizyme mRNA band of 1.3 kb was detected in rat tissues. Antizyme mRNA did not increase upon administration of putrescine, an inducer of antizyme, and its half-life after actinomycin D treatment was as long as 12 h in rat liver, suggesting that antizyme mRNA is constitutively expressed and antizyme synthesis is regulated at the translational level. Similar-sized mRNAs hybridizable to the cDNA were also found in various mammalian and non-mammalian vertebrate tissues under physiological conditions. In addition, chicken and frog antizymes showed immunocrossreactivity with rat antizyme. The ubiquitous presence and the evolutionally conserved structure of antizyme in vertebrate tissues suggest that it has an important function.  相似文献   

11.
The two basic Escherichia coli proteins that inhibit ornithine and arginine decarboxylase and were named provisionally antizyme 1 and antizyme 2 (Heller, J.S., Rostomily, R., Kyriakidis, D.A., and Canellakis, E.S. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 5181-5184) are shown to have long identical sequences with the ribosomal proteins S20/L26 and L34, respectively. We have also isolated ribosomal proteins from purified E. coli ribosomes by established methodology and further purified them by our purification procedure for antizymes 1 and 2. Of the various basic ribosomal proteins, two were found to have the same properties as antizyme 1 and 2. These results indicate that these two basic E. coli antizymes are ribosomal proteins. The nature of the acidic antizyme remains to be elucidated.  相似文献   

12.
A macromolecular factor that inhibits the activity of the antizyme to ornithine decarboxylase (ODC) was found in rat liver extracts. The factor, 'antizyme inhibitor', was heat-labile, non diffusable and of similar molecular size to ODC. The antizyme inhibitor re-activated ODC that had been inactivated by antizyme, apparently by replacing ODC in a complex with antizyme. Therefore the antizyme inhibitor can be used to assay the amount of inactive ODC-antizyme complex formed in vitro. When assayed by this method, the complex was shown to be eluted before ODC from a Sephadex G-100 column. Significant increase in ODC activity was observed when the antizyme inhibitor was added to crude liver extracts from rats that had been injected with 1,3-diaminopropane to cause decay of ODC activity, suggesting the presence of inactive ODC-antizyme complex in the extracts.  相似文献   

13.
The inhibitory effect of a series of 2-alkylputrescines on rat liver and Escherichia coli ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) was examined. At 2.5 mM concentrations, 2-methyl-, 2-propyl-, 2-butyl-, 2-pentyl- and 2-hexylputrescines were stronger inhibitors of the mammalian enzyme than putrescine. Only the higher homologues (from 2-propyl- to 2-hexylputrescine) were inhibitors of the E. coli enzyme. An analysis of the effect of increasing concentrations of the 2-alkylputrescines showed that the main difference in the behaviour of the mammalian and E. coli decarboxylases toward 2-alkylputrescines was that the former was strongly inhibited by 2-methylputrescine whereas the latter was not. 2-Alkylputrescines were found to be competitive inhibitors of both the bacterial and mammalian enzyme. The smallest Ki values (0.1 and 0.5 mM) were found for the 2-hexyl- and 2-pentylputresciens. N-Methyl-, N-ethyl-, N-propyl- and N-butylputrescines (50 mumol per 100 g body weight) were assayed as inhibitors of thioacetamide-induced rat liver ornithine decarboxylase. N-Propylputrescine was found to be the most inhibitory (66% inhibition) and although the N-alkylputrescines were taken up by the liver, they did not inhibit the liver polyamine pools. Both putrescine and N-methylputrescine were found to stabilize the thioacetamide-induced ornithine decarboxylase at the onset of the enzyme's degradation, while 2-alkylputrescines were inhibitory under similar conditions. N-Methylputrescine induced antizyme in thioacetamide-treated rats. In thioacetamide- or dexamethasone-treated rats, 2-methylputrescine was found to be the strongest in vivo inhibitor of the liver decarboxylase. Although 2-alkylputrescines were efficiently taken up by the liver, they did not noticeably inhibit its polyamine pools. 2-methylputrescine decreased the putrescine concentration of the liver, but not its spermidine and spermine content. No induction of ornithine decarboxylase antizyme by 2-methylputrescine could be detected. The intrahepatic concentration of the latter decreased with time, very likely due to its degradation by a diamine oxidase, since the decrease was inhibited by aminoguanidine.  相似文献   

14.
The current study explored prolactin proteolysis by rat lactating mammary gland. 125I-labelled rat prolactin was incubated with tissue fractions of lactating mammary gland and the extent of prolactin degradation and fragment formation was visualized and densitometrically quantitated from autoradiographs derived from SDS-polyacrylamide gel electrophoresis under reducing conditions. At pH 4.5, the 25 000 X g pellet of mammary gland converted intact prolactin (23 kDa band) to proteolytic fragments (8-16 kDa bands) in a time- and tissue concentration-dependent fashion similar to that reported previously for rat ventral prostate. The prolactin-degrading and -fragmenting activity in lactating mammary gland was 5-10-times that observed for ventral prostate, the most active male tissue. This activity at acid pH was also demonstrable in other fractions of mammary gland but appeared to predominate in the cytosol. The above activities in mammary gland virtually disappeared at pH 7.4, appeared sensitive to aspartate and sulfhydryl proteinase inhibitors, and insensitive to serine and metalloenzyme proteinase inhibitors. The distribution of this activity could not be correlated with a particular enzyme marker. These characteristics of mammary gland activity differed significantly from those reported previously for prostate. When electrophoresis was conducted under non-reducing conditions, prolactin proteolysis in prostate and mammary gland was primarily associated with the formation of a more slowly migrating product (24 kDa band) with little spontaneous 8-16 kDa fragment formation. Re-electrophoresis of the 24 kDa band under reducing conditions resulted in the appearance of the 8 and 16 kDa fragments. In conclusion, prolactin is proteolytically modified by prostate and lactating mammary gland to a variant of intact hormone (24 kDa band) with a cleavage site in its large loop, by two or more widely distributed, acid-dependent proteinases. Lactating mammary gland, the principal target for prolactin, has the capacity to cleave the hormone in its loop at rates higher than any other tissue examined to date.  相似文献   

15.
Repeated injections of 1,3-diaminopropane, a potent inhibitor of mammalian ornithine decarboxylase, induced protein-synthesis-dependent formation of macromolecular inhibitors or ;antienzymes' [Heller, Fong & Canellakis (1976) Proc. Natl. Acad. Sci. U.S.A.73, 1858-1862] to ornithine decarboxylase in normal rat liver. Addition of the macromolecular inhibitors, produced in response to repeated injections of diaminopropane, to active ornithine decarboxylase in vitro resulted in a profound loss of the enzyme activity, which, however, could be partly recovered after passage of the enzyme-inhibitor mixture through a Sephadex G-75 columin in the presence of 0.4m-NaCl. This treatment also resulted in the appearance of free inhibitor. In contrast with the separation of the enzyme and inhibitory activity after combination in vitro, it was not possible to re-activate, by using identical conditions of molecular sieving, any inhibited ornithine decarboxylase from cytosol fractions obtained from animals injected with diaminopropane. However, the idea that injection of various diamines, also in vivo, induces acute formation of macromolecular inhibitors, which reversibly combine with the enzyme, was supported by the finding that the ornithine decarboxylase activity remaining after diaminopropane injection appeared to be more stable to increased ionic strength than the enzyme activity obtained from somatotropin-treated rats. Incubation of the inhibitory cytosol fractions with antiserum to ornithine decarboxylase did not completely abolish the inhibitory action of either the cytosolic inhibitor or the antibody. A single injection of diaminopropane produced an extremely rapid decay of liver ornithine decarboxylase activity (half-life about 12min), which was comparable with, or swifter than, that induced by cycloheximide. However, although after cycloheximide treatment the amount of immunotitrable ornithine decarboxylase decreased only slightly more slowly than the enzyme activity, diaminopropane injection did not decrease the amount of the immunoreactive protein, but, on the contrary, invariably caused a marked increase in the apparent amount of antigen, after some lag period. The diamine-induced increase in the amount of the immunoreactive enzyme protein could be totally prevented by a simultaneous injection of cycloheximide. These results are in accord with the hypothesis that various diamines may result in rapid formation of macromolecular inhibitors to ornithine decarboxylase in vivo, which, after combination with the enzyme, abolish the catalytic activity but at the same time prevent the intracellular degradation of the enzyme protein.  相似文献   

16.
The purification of a chromatin-bound antizyme to ornithine decarboxylase from germinated barley seeds is described. This antizyme was extracted from chromatin by 2 M NaCl and purified to homogeneity. Its molecular weight was found to be 9000 with an isoelectric point of 4.1. It reacts with both cytosolic and chromatinbound ornithine decarboxylase from germinated barley seeds and E. coli, but it does not inhibit ornithine decarboxylase of Tetrahymena pyriformis or rat liver.  相似文献   

17.
Escherichia coli ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) was found to be inhibited by several basic proteins. When ribosomal proteins were tested, major ribosomal proteins, with the exceptions of S1, S5, S6, S8, S10, L3, L5, L6, L7/L12, L8, L9 and L10 proteins, showed antizyme activity in addition to the recognized antizymes (S20/L26 and L34 proteins). Furthermore, it was found that L20 protein and a new ribosomal protein, tentatively named X1 protein and bound to 50 S ribosomal subunits, showed stronger antizyme activity than S20/L26 and L34 proteins. The antizyme activity of S20/L26 and L34 proteins was at most 10% of the total antizyme activity of ribosomal proteins. Several basic polypeptides also showed antizyme activity in the order polyarginine greater than protamine greater than histone greater than polylysine. Ribosomal proteins and basic polypeptides inhibited ornithine decarboxylase activity competitively. Ribosome-bound antizymes were inactive as antizymes, and antizyme inhibition of ornithine decarboxylase was eliminated by ribosomes. When E. coli extracts were separated into ribosomes and 100,000 X g supernatant fraction, no significant antizyme activity was observed in the supernatant fraction. Results of these in vitro experiments infer that basic antizymes may not function as inhibitors of ornithine decarboxylase in vivo.  相似文献   

18.
19.
Function of arginase in lactating mammary gland   总被引:5,自引:3,他引:2  
The potential for a considerable formation of ornithine exists in lactating mammary gland because of its arginase content. Late in lactation arginase reaches an activity in the gland higher than that present in any rat tissue except liver. Occurrence of the urea cycle can be excluded since two enzymes for the further reaction of ornithine in the cycle, carbamoyl phosphate synthetase I and ornithine carbamoyltransferase, are both absent from this tissue. Instead, carbamoyl phosphate synthetase II appears early in lactation, associated with accumulation of aspartate carbamoyltransferase and DNA, consistent with the proposed role of these enzymes in pyrimidine synthesis. The facts require another physiological role for arginase apart from its known function in the urea cycle. Significant activity of ornithine aminotransferase develops in mammary gland in close parallel with the arginase. By this reaction, ornithine can be converted into glutamic semialdehyde and subsequently into proline. The enzymic composition of the lactating mammary gland is therefore appropriate for the major conversion of arginine into proline that is known to occur in the intact gland.  相似文献   

20.
A complementary DNA (cDNA) clone (p13) for a rare mRNA was isolated from a cDNA library generated from total polyA+ RNA of 14-day lactating rat mammary gland. In vitro translation of the positively selected mRNA from p13 cDNA revealed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) a polypeptide of 24 kDa. The p13 cDNA clone hybridized on northern blots predominantly to approximately 1100 base size RNA and weakly to approximately 3800 base size RNA from lactating mammary gland. It hybridized only to approximately 3800 base size RNA from rat liver. Southern blot analysis of genomic DNA showed differences in gene organization in mammary gland and liver. The mRNA level for the 24 kDa polypeptide was higher in 7-12 DMBA-induced tumor and lower in the MTW9 carcinoma as compared to lactating mammary gland. After ovariectomy, the mRNA level in mid pregnant gland increased but was reduced in the 7-12 DMBA tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号