首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two enzymes containing thiosulfate sulfur transferase activity were purified fromChlorobium vibrioforme f.thiosulfatophilum by ion exchange chromatography, gel filtration and isoelectrofocusing. Enzyme I is a basic protein with an isoelectric point at pH 9.2 and has a molecular weight of 39,000. TheK m-values for thiosulfate and cyanide of the purified basic protein were 0.25 mM (thiosulfate) and 5 mM (cyanide). Enzyme II is an acidic protein. The enzyme has an isoelectric point at pH 4.6–4.7 and a molecular weight of 34,000. TheK m-values of the acidic protein were found to be 5 mM for thiosulfate and 125 mM for cyanide.In addition to thiosulfate sulfur transferase activity, cellfree extracts ofChlorobium vibrioforme f.thiosulfatophilum also contained low thiosulfate oxidase activity and negligible thiosulfate reductase activity. The percent distribution of thiosulfate sulfur transferase and thiosulfate oxidase activities in the organism was independent of the offered sulfur compound (thiosulfate, sulfide or both) in the medium.Abbreviations C Chlorobium - SDS sodium dodecylsulfate Dedicated to Prof. Dr. Norbert Pfennig on the occasion of his 60th birthday  相似文献   

2.
The composition, abundance and apparent molecular masses of chlorosome polypeptides from Chlorobium tepidum and Chlorobium vibrioforme 8327 were compared. The most abundant, low-molecular-mass chlorosome polypeptides of both strains had similar electrophoretic mobilities and abundances, but several of the larger proteins were different in both apparent mass and abundance. Polyclonal antisera raised against recombinant chlorosome proteins of Cb. tepidum recognized the homologous proteins in Cb. vibrioforme, and a one-to-one correspondence between the chlorosome proteins of the two species was confirmed. As previously shown [Ormerod et al. (1990) J Bacteriol 172: 1352–1360], acetylene strongly suppressed the synthesis of bacteriochlorophyll c in Cb. vibrioforme strain 8327. No correlation was found between the bacteriochlorophyll c content of cells and the cellular content of chlorosome proteins. Nine of ten chlorosome proteins were detected in acetylene-treated cultures, and the chlorosome proteins were generally present in similar amounts in control and acetylene-treated cells. These results suggest that the synthesis of chlorosome proteins and the assembly of the chlorosome envelope is constitutive. It remains possible that the synthesis of bacteriochlorophyll c and its insertion into chlorosomes might be regulated by environmental parameters such as light intensity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
The csmB gene, encoding the 7.5-kDa “Gerola-Olson” protein of chlorosomes, has been cloned and sequenced from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Two potential start codons were identified, and the csmB gene may be translated into a preprotein with an amino-terminal extension. Two forms of the mature CsmB protein (74 or 75 amino acids in length) were identified that differ by the presence or absence of a methionine residue at the amino terminus. The csmB gene of Chl. tepidum is transcribed as an abundant monocistronic mRNA of approximately 350 nucleotides; primer extension mapping of the 5′ endpoint of the csmB mRNA suggests there is strong similarity between the csmB promoter and the σ70 promoters of Escherichia coli. The CsmB protein of Chl. tepidum was overproduced as a histidine-tagged fusion protein in E. coli, purified to homogeneity by Ni2+ chelation affinity chromatography, and used to raise polyclonal antibodies in rabbits. Protease susceptibility mapping and agglutination experiments with isolated chlorosomes using anti-CsmB antibodies indicate that the CsmB protein is a component of the chlorosome envelope. Received: 28 May 1996 / Accepted: 17 July 1996  相似文献   

4.
The chlorosomal bacteriochlorophyll (BChl) composition of the green sulfur bacteria Chlorobium vibrioforme and Chlorobium phaeovibrioides was investigated by means of normal-phase high-performance liquid chromatography. From both species a number of homologues was isolated, which were identified by absorption and 252Cf-plasma desorption mass spectroscopy. Besides BChl d, C. vibrioforme contained a significant amount of BChl c, which may provide an explanation for the previous observation of at least two spectrally different pools of BChl in the chlorosomes of green sulfur bacteria (Otte et al. 1991). C. phaeovibrioides contained various homologues of BChl e only. Absorption spectra in acetone of BChl c, d and e, as well as bacteriopheophytin e are presented. No systematic differences were found for the various homologues of each pigment. In addition to farnesol, the mass spectra revealed the presence of various minor esterifying alcohols in both species, including phytol, oleol, cetol and 4-undecyl-2-furanmethanol, as well as an alcohol of low molecular mass, which is tentatively assumed to be decenol.Abbreviations BChl bacteriochlorophyll - BPh bacteriopheophytin (used as a general name for the Mg-free compound, irrespective of the esterifying alcohol) - HPLC high-performance liquid chromatography  相似文献   

5.
6.
The pigment composition and energy transfer pathways in isolated chlorosomes ofChlorobium phaeovibrioides andChlorobium vibrioforme were studied by means of high performance liquid chromatography (HPLC) and picosecond absorbance difference spectroscopy. Analysis of pigment extracts of the chlorosomes revealed that they contain small amounts of bacteriochlorophyll (BChl)a esterified with phytol, whereas the BChlsc, d ande are predominantly esterified with farnesol. The chlorosomal BChla content inC. phaeovibrioides andC. vibrioforme was found to be 1.5% and 0.9%, respectively. The time resolved absorbance difference spectra showed a bleaching shifted to longer wavelengths as compared to the Qy absorption maxima and in chlorosomes ofC. vibrioforme also an absorbance increase at shorter wavelengths was observed. These spectral features were ascribed to excitation of oligomers of BChle and BChlc/d, respectively. One-color and two-color pump-probe kinetics ofC. phaeovibrioides showed rapid energy transfer to long-wavelength absorbing BChle oligomers, followed by trapping of excitations by BChla with a time constant of about 60 ps. Time resolved anisotropy measurements inC. vibrioforme showed randomization of excitations among BChla molecules with a time constant of about 20 ps, indicating that BChla in the baseplate is organized in clusters. One-color and two-color pump-probe measurements inC. vibrioforme showed rapid energy transfer from short-wavelength to long-wavelength absorbing oligomers with a time constant of about 11 ps. Trapping of excitations by BChla in this species could not be resolved unambiguously due to annihilation processes in the BChla clusters, but may occur with time constants of 15, 70 and 200 ps.  相似文献   

7.
Highly efficient and reproducible transformation ofChlorobium vibrioforme with plasmid DNA has been achieved by electroporation. Specific parameters have been optimized for the electrotransformation procedure. The method was developed using a construct containing a full copy of thepscC gene encoding the cytochromec 551 subunit of the photosynthetic reaction center complex and theaadA gene encoding streptomycin resistance as selectable marker. Southern blotting analysis showed that the tested colonies were true transformants with the plasmid integrated into the genome by single homologous recombination. No transformants were obtained using the vector without thepscC gene showing that this vector does not replicate inC. vibrioforme. Thus transformation is possible only by homologous recombination. When using constructs designed to inactivate thepscC gene by insertion no transformants were obtained, indicating that the gene is indispensable for growth. The vector pVS2 carrying genes for erythromycin and chloramphenicol resistance was shown to replicate inC. vibrioforme. The two transformations shown here, provide an important genetical tool in the further analysis of structure and function of the photosynthetic apparatus in green sulfur bacteria.  相似文献   

8.
The photosynthetic reaction center complex from the green sulfur bacteriumChlorobium vibrioforme has been isolated under anaerobic conditions. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals polypeptides with apparent molecular masses of 80, 40, 30, 18, 15, and 9 kDa. The 80- and 18-kDa polypeptides are identified as the reaction center polypeptide and the secondary donor cytochromec 551 encoded by thepscA andpscC genes, respectively. N-terminal amino acid sequences identify the 40-kDa polypeptide as the bacteriochlorophylla-protein of the baseplate (the Fenna-Matthews-Olson protein) and the 30-kDa polypeptide as the putative 2[4Fe-4S] protein encoded bypscB. Electron paramagnetic resonance (EPR) analysis shows the presence of an iron-sulfur cluster which is irreversibly photoreduced at 9K. Photoaccumulation at higher temperature shows the presence of an additional photoreduced cluster. The EPR spectra of the two iron-sulfur clusters resemble those of FA and FB of Photosystem I, but also show significantly differentg-values, lineshapes, and temperature and power dependencies. We suggest that the two centers are designated Center I (with calculatedg-values of 2.085, 1.898, 1.841), and Center II (with calculatedg-values of 2.083, 1.941, 1.878). The data suggest that Centers I and II are bound to thepscB polypeptide.  相似文献   

9.
The green sulfur bacterium, Chlorobium vibrioforme, synthesizes the tetrapyrrole precursor, -aminolevulinic acid (ALA), from glutamate via the RNA-dependent five-carbon pathway. A 1.9-kb clone of genomic DNA from C. vibrioforme that is capable of transforming a glutamyl-tRNA reductase-deficient, ALA-dependent, hemA mutant of Escherichia coli to prototrophy was sequenced. The transforming C. vibrioforme DNA has significant sequence similarity to the E. coli, Salmonella typhimurium, and Bacillus subtilis hemA genes and contains a 1245 base open reading frame that encodes a 415 amino acid polypeptide with a calculated molecular weight of 46174. This polypeptide has over 28% amino acid identity with the polypeptides deduced from the nucleic acid sequences of the E. coli, S. typhimurium, and B. subtilis hemA genes. No sequence similarity was detected, at either the nucleic acid or the peptide level, with the Rhodobacter capsulatus or Bradyrhizobium japonicum hemA genes, which encode ALA synthase, or with the S. typhimurium hemL gene, which encodes glutamate-1-semialdehyde aminotransferase. These results establish that hemA encodes glutamyl-tRNA reductase in species that use the five-carbon ALA biosynthetic pathway. A second region of the cloned DNA, located downstream from the hemA gene, has significant sequence similarity to the E. coli and B. subtilis hemC genes. This region contains a potential open reading frame that encodes a polypeptide that has high sequence identity to the deduced E. coli and B. subtilis HemC peptides. hemC encodes the tetrapyrrole biosynthetic enzyme, porphobilinogen deaminase, in these species. Preliminary evidence was obtained for the existence of a 3.0-kb polycistronic meassge that includes the hemA sequence, in exponentially growing C. vibrioforme cells. Results of condon usage analysis for the C. vibrioforme hemA gene indicate that green sulfur bacteria are more closely related to purple nonsulfur bacteria than to enteric bacteria. Sequences corresponding to a polyadenylation signal and a poly(A) attachment site were found immediately downstream from the 3 end of the hemA open reading frame.  相似文献   

10.
We studied the photosynthetic electron transfer system of membrane-bound and soluble cytochromec inChlorobium tepidum, a thermophilic green sulfur bacterium, using whole cells and membrane preparations. Sulfide and thiosulfate, physiological electron donors, enhanced flash-induced photo-oxidation ofc-type cytochromes in whole cells. In membranes,c-553 cytochromes with two (or three) heme groups served as immediate electron donors for photo-oxidized bacteriochlorophyll (P840) in the reaction center, and appeared to be closely associated with the reaction center complex. The membrane-bound cytochromec-553 had anE m-value of 180 mV. When isolated soluble cytochromec-553, which has an apparent molecular weight of 10 kDa and seems to correspond to the cytochromec-555 inChlorobium limicola andChlorobium vibrioforme, was added to a membrane suspension, rapid photo-oxidation of both soluble and membrane-bound cytochromesc-553 was observed. The oxidation of soluble cytochromec-553 was inhibited by high salt concentrations. In whole cells, photo-oxidation was observed in the absence of exogenous electron donors and re-reduction was inhibited by stigmatellin, an inhibitor of the cytochromebc complex. These results suggest that the role of membrane-bound and soluble cytochromec inC. tepidum is similar to the role of cytochromec in the photosynthetic electron transfer system of purple bacteria.  相似文献   

11.
Two sub-strains of the anoxygenic photosynthetic green sulfur bacterium Chlorobium vibrioforme NCIB 8327 were derived from the same clone and could be discriminated only by their possession of either bacteriochlorophyll (BChl) c or d as the major pigment in the peripheral light-harvesting antenna system, chlorosome (Saga Y et al. (2003) Anal Sci 19: 1575–1579). In the presence of a proper amount of oxygen in the initial culture medium, the BChl d strain showed longer retardation on its growth initiation than the BChl c strain, indicating that the latter was advantageous for survival under aerobic light conditions which produced reactive oxygen species in vivo. The result would be ascribable to the difference of the midpoint potentials between two kinds of chlorosomes formed by self-aggregates of BChl c and d as measured by their fluorescence quenching.  相似文献   

12.
Insertion of magnesium into protoporphyrin IX is a complex ATP-dependent reaction catalysed by the enzyme Mg-chelatase. Three separate proteins (Mg-chelatase subunits), designated as D, H and I, are involved in the chelation reaction. The genes encoding the Mg-chelatase subunits of the green sulfur bacterium Chlorobium vibrioforme and of the cyanobacterium Synechocystis strain PCC6803 were expressed in Escherichia coli. The recombinant proteins were purified, tested for ATPase and phosphate exchange activities, and compared with the activities of the corresponding subunits of Rhodobacter sphaeroides. The Synechocystis strain PCC6803 I subunit and the C. vibrioforme H and I subunits hydrolysed ATP at the rates of 2.0, 1.8 and 0.16 nmol (mg protein)–1 min–1, respectively. The ATPase activity of the C. vibrioforme H subunit was similar to that reported for the R. sphaeroides H subunit. The Synechocystis strain PCC6803 H subunit failed to hydrolyse ATP. The I subunit of Synechocystis strain PCC6803 and C. vibrioforme catalysed a transfer of PO4 from ATP to ADP (exchange activity) at the rate of 1.75 ± 0.15 nmol (mg protein)–1 min–1. This exchange rate was 300-fold lower than that reported for the R. sphaeroides I subunit. The PO4 exchange activities were correlated with the presence of the sequence GXRGTGKSTXVRALA in the primary structure of the three I subunits. Mg-chelatase activity was reconstituted by combining the three subunits of the same bacterium [rates of 41–89 pmol Mg-deuteroporphyrin (mg protein)–1 min–1]. Heterologous subunit combinations resulted in low or no Mg-chelatase activity. Received: 25 May 1998 / Revision received: 24 November 1998 / Accepted: 27 November 1998  相似文献   

13.
High activities of ATP sulfurylase were found in the soluble protein fraction of two Chlorobium limicola strains, whereas ADP sulfurylase was absent. ATP sulfurylase was partially purified and characterized. It was a stable soluble enzyme with a molecular weight of 230,000, buffer-dependent pH optima at 8.6 and 7.2 and an isoelectric point at pH 4.8. No physiological inhibitor was found. Inhibition was observed with p-CMB and heavy metals. Sulfur compounds had no effect on enzyme activity. The stoichiometry of the reaction was proven. In contrast, an ADP sulfurylase, but no ATP sulfurylase, was found in Chlorobium vibrioforme. This enzyme was very labile with a molecular weight of about 120,000 and buffer-dependent pH optima at 9.0 and 8.5. Under test conditions the apparent K m value was determined to be 0.28 mM for adenylyl sulfate and 8.0 mM for phosphate.Abbreviations APS adenylyl sulfate - p-CMB parachloromercuribenzoate - PPi inorganic pyrophosphate  相似文献   

14.
We previously reported the DNA sequence and expression of the Chlorobium vibrioforme glutamyl-tRNA reductase (hemA) gene (Majumdar et al., Arch Microbiol 156:281, 1991). The sequence downstream of the hemA gene indicated homology to Escherichia coli and Bacillus subtilis porphobilinogen deaminase (hemC) gene. The Chlorobium gene was confirmed to be the porphobilinogen deaminase gene, and complete sequence of the structural gene was obtained. A 2.8-kb DNA fragment containing the 1.3-kb hemA gene of Chlorobium was cloned into a hemC auxotroph (Sz16) of Bacillus subtilis, and complementation of the auxotroph to prototrophy was achieved. DNA sequence data showed a single open reading frame of 840 bp coding a protein of 279 amino acid residues. The deduced amino acid sequence of the Chlorobium porphobilinogen deaminase revealed 39% to 46% homology with the corresponding prokaryotic and eukaryotic sequences. Received: 20 September 1996 / Accepted: 26 October 1996  相似文献   

15.
The 16S rDNA sequences of nine strains of green sulfur bacteria (Chlorobiaceae) were determined and compared to the four known sequences of Chlorobiaceae and to sequences representative for all eubacterial phyla. The sequences of the Chlorobiaceae strains were consistent with the secondary structure model proposed earlier for Chlorobium vibrioforme strain 6030. Similarity values > 90.1% and Knuc values < 0.11 indicate a close phylogenetic relatedness among the green sulfur bacteria. As a group, these bacteria represent an isolated branch within the eubacterial radiation. In Chlorobiaceae, a similar morphology does not always reflect a close phylogenetic relatedness. While ternary fission is a morphological trait of phylogenetic significance, gas vesicle formation occurs also in distantly related species. Pigment composition is not an indicator of phylogenetic relatedness since very closely related species contain different bacteriochlorophylls and carotenoids. Two different molecular fingerprinting techniques for the rapid differentiation of Chlorobiaceae species were investigated. The 16S rDNA fragments of several species could not be separated by denaturing gradient gel electrophoresis. In contrast, all strains investigated during the present work gave distinct banding patterns when dispersed repetitive DNA sequences were used as targets in PCR. The latter technique is, therefore, well suited for the rapid screening of isolated pure cultures of green sulfur bacteria. Received: 26 August 1996 / Accepted: 8 January 1997  相似文献   

16.
Magnesium-protoporphyrin chelatase, the first enzyme unique to the (bacterio)chlorophyll-specific branch of the porphyrin biosynthetic pathway, catalyzes the insertion of Mg2+ into protoporphyrin IX. Three genes, designated bchI, -D, and -H, from the strictly anaerobic and obligately phototrophic green sulfur bacterium Chlorobium vibrioforme show a significant level of homology to the magnesium chelatase-encoding genes bchI, -D, and -H and chlI, -D, and -H of Rhodobacter sphaeroides and Synechocystis strain PCC6803, respectively. These three genes were expressed in Escherichia coli; the subsequent purification of overproduced BchI and -H proteins on an Ni2+-agarose affinity column and denaturation of insoluble BchD protein in 6 M urea were required for reconstitution of Mg-chelatase activity in vitro. This work therefore establishes that the magnesium chelatase of C. vibrioforme is similar to the magnesium chelatases of the distantly related bacteria R. sphaeroides and Synechocystis strain PCC6803 with respect to number of subunits and ATP requirement. In addition, reconstitution of an active heterologous magnesium chelatase enzyme complex was obtained by combining the C. vibrioforme BchI and -D proteins and the Synechocystis strain PCC6803 ChlH protein. Furthermore, two versions, with respect to the N-terminal start of the bchI gene product, were expressed in E. coli, yielding ca. 38- and ca. 42-kDa versions of the BchI protein, both of which proved to be active. Western blot analysis of these proteins indicated that two forms of BchI, corresponding to the 38- and the 42-kDa expressed proteins, are also present in C. vibrioforme.  相似文献   

17.
The marine green sulfur bacterium Chlorobium vibrioforme strain 1930 produced H2 and elemental sulfur from sulfide or thiosulfate under N limitation in the light. H2 production depended on nitrogenase and occurred only in the absence of ammonia. Methionine sulfoximine, an inhibitor of glutamine synthetase, prevented the switch-off by ammonia. In defined syntrophic cocultures of the acetate-oxidizing, sulfur-reducing bacterium Desulfuromonas acetoxidans with green sulfur bacteria, H2 was produced from acetate via a light-driven sulfur cycle. The sulfur-reducing bacterium could not be replaced by sulfate-reducing bacteria in these experiments. In a coculture of the marine Chlorobium vibrioforme strain 1930 and the sulfur-reducing bacterium Desulfuromonas acetoxidans strain 5071, optimum long-term H2 production from acetate was obtained with molecular nitrogen as N source, at low light intensity (110 mol · m-2 · s-1), in sulfide-reduced mineral medium (2 mM Na2S) at pH 6.8. Traces of sulfide (10 M) were sufficient to keep the sulfur cycle running. The coculture formed no poly--hydroxyalkanoates (PHA), but 20%–40% polysaccharide per cell dry mass. Per mol acetate added, the coculture formed 3.1 mol of H2 (78% of the theoretical maximum). Only 8% of the reducing equivalents was incorporated into biomass. The maximum rate of H2 production was 1300 ml H2 per day and g cell dry mass.Non-standard abbrevations MOPS 2-(N-morpholino) propane sulfonic acid - MSX Methionine sulfoximine - PHA poly--hydroxyalkanoates  相似文献   

18.
Thirteen meromictic lakes and two permanently stratified fjords in the Vestfold Hills, Antarctica, were surveyed in 1983 for photosynthetic bacteria. Burton Lake and Ellis Fjord were sampled throughout the year to determine seasonal variations. Physical and chemical parameters were recorded and related to the species present. The dominant species in waters with salinities of 100.7 g kg–1 were Chlorobium vibrioforme and Chlorobium limicola with populations at the O2–H2S interface in the range 0.3 to 6.7 × 106 ml–1. Neither of these species was found at higher salinities. Thiocapsa roseopersicina and a Chromatium sp. were found in low numbers (< 105 ml–1) in most of the same waters as the Chlorobium spp. These bacterial phototrophs developed in a narrow band below the O2–H2S interface where both light and H2S were available. Very low numbers (< 102 ml–1) of Rhodopseudomonas palustris were found in both oxic and anoxic waters having salinity 148 g kg–1. The dominance of the Chlorobium spp. is ascribed to their more efficient maintenance metabolism during the darkness, their faster growth at low light intensities (< 1 µE m–2 s–1) and the lack of selective filtering of incident light. The Chlorobium spp. grew well at –2 °C, but not –5°C in hypersaline waters. The concentration of H2S had no apparent effect on the development of the bacterial flora. Viable cells were found to depths of 100 m in Ellis Fjord indicating that viability in total darkness could have been maintained for periods of the order of 1700 days.  相似文献   

19.
Three cytochromes of the thiosulfate-utilizing green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum were highly purified by ion exchange column chromatography and ammonium sulfate fractionation. All three cytochromes are located in the soluble fraction. Cytochrome c-551 (highest purity index obtained: A280/A416=0.39) shows maxima at 551 nm (-band), 521 nm (-band), and 416 nm (-band) for the reduced form. This cytochrome is an acidic protein with a molecular weight of 32,000, a redox potential of 150 mV, and an isoelectric point at pH 6.0. Cytochrome c-553 (highest purity index obtained: A280/A417=0.8) is also an acidic protein with maxima at 553,5 nm, 523,5 nm and 417 nm for the reduced form, a molecular weight of 63,000, a redox potential of 90 mV, an isoelectric point at pH 6.3, and it contains FAD as flavin component. It is autoxidizable and participates in sulfide oxidation, but cannot catalyze the reverse reaction. The cytochrome c-555 (highest purity index obtained: A280/A418=0.16) is a small basic protein with maxima at 555 nm, 523 nm and 418 nm (reduced form), a molecular weight of 12,500, an isoelectric point between pH 10 and 10.5, and a redox potential of 155 mV. The ratio of the cytochrome contents to each other is constant and does not change when the organism has only thiosulfate or sulfide as the main electron donor in the medium.The soluble fraction further contains the non-heme ironcontaining proteins rubredoxin and ferredoxin. The anaerobic sulfide oxidation in a growing culture of Chlorobium vibrioforme f. thiosulfatophilum is accompanied by a rapid formation of thiosulfate, which is only utilized when sulfide is no longer available, while the elemental sulfur concentration increases constantly until thiosulfate is consumed.Non-common abbreviations C Chlorobium - SDS sodium dodecylsulfate - HIPIP high-potential-iron-sulfur-protein  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号