首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electromechanical delay (EMD) in isometric contractions of knee extensors evoked by voluntary, tendon reflex (TR) and electrical stimulation (ES) was investigated in 21 healthy young subjects. The subject performed voluntary knee extensions with maximum effort (maximal voluntary contraction, MVC), and at 30%, 60% and 80% MVC. Patellar tendon reflexes were evoked with the reflex hammer being dropped from 60°, 75° and 90° positions. In the percutaneous ES evoked contractions, single switches were triggered with pulses of duration 1.0 ms and of intensities 90, 120 and 150 V. Electromyograms of the vastus lateralis and rectus femoris muscles were recorded using surface electrodes. The isometric knee extension force was recorded using a load cell force transducer connected to the subject's lower leg. The major finding of this study was that EMD of the involuntary contractions [e.g. mean 22.1 (SEM 1.32) ms in TR 90°; mean 17.2 (SEM 0.62) ms in ES 150 V] was significantly shorter than that of the voluntary contractions [e.g. mean 38.7 (SEM 1.18) ms in MVC,P < 0.05]. The relationships between EMD, muscle contractile properties and muscle fibre conduction velocity were also investigated. Further study is needed to explain fully the EMD differences found between the voluntary and involuntary contractions.  相似文献   

2.
Residual force enhancement (RFE) and force depression (FD) refer to an increased or decreased force following an active lengthening or shortening contraction, respectively, relative to the isometric force produced at the same activation level and muscle length. Our intent was to determine if EMG characteristics differed in the RFE or FD states compared with a purely isometric reference contraction for maximal and submaximal voluntary activation of the adductor pollicis muscle. Quantifying these alterations to EMG in history-dependent states allows for more accurate modeling approaches for movement control in the future. For maximal voluntary contractions (MVC), RFE was 6–15% (P < 0.001) and FD was 12–19% (P < 0.001). The median frequency of the EMG was not different between RFE, FD and isometric reference contractions for the 100% and 40% MVC intensities (P > 0.05). However, root mean square EMG (EMGRMS) amplitude for the submaximal contractions was higher in the FD and lower in the RFE state, respectively (P < 0.05). For maximal contractions, EMGRMS was lower for the FD state but was the same for the RFE state compared to the isometric reference contractions (P > 0.05). Neuromuscular efficiency (NME; force/EMG) was lower in the force depressed state and higher in the force enhanced state (P < 0.05) compared to the isometric reference contractions. EMG spectral properties were not altered between the force-enhanced and depressed states relative to the isometric reference contractions, while EMG amplitude measures were.  相似文献   

3.
Motor unit activation patterns were studied during four different force levels of concentric and eccentric actions. Eight male subjects performed concentric and eccentric forearm flexions with the movement range from 100 degrees to 60 degrees in concentric and from 100 degrees to 140 degrees elbow angle in eccentric actions. The movements were started either from zero preactivation or with isometric preactivation of the force levels of 20, 40, 60 and 80% MVC. The subjects were then instructed to maintain the corresponding relative force levels during the dynamic actions. Intramuscular and surface EMG was recorded from biceps brachii muscle. Altogether 28 motoneuron pools were analyzed using the intramuscular spike-amplitude frequency (ISAF) analysis technique of Moritani et al. The mean spike amplitude was lower and the mean spike frequency higher in the isometric preactivation phase than in the consequent concentric and eccentric actions. When the movements started with isometric preactivation the mean spike amplitude increased significantly (P<0.001) up to 80% in isometric and concentric actions but in eccentric actions the increase continued only up to 60% (P<0.01). The mean spike frequency in isometric preactivation and in concentric action with preactivation was lower only at the 20% force level (P<0.01) as compared to the other force levels while in eccentric action with preactivation the increase between the force levels was significant (P<0.01) up to 60%. When the movement was started without preactivation the mean spike amplitude at 20% and at 40% force level was higher (P<0.01) in eccentric action than in concentric actions. It was concluded that the recruitment threshold may be lower in dynamic as compared to isometric actions. The recruitment of fast motor units may continue to higher force levels in isometric and in concentric as in eccentric actions which, on the other hand, seems to achieve the higher forces by increasing the firing rate of the active units. At the lower force levels mean spike amplitude was higher in eccentric than in concentric actions which might indicate selective activation of fast motor units. This was, however, the case only when the movements were started without isometric preactivation.  相似文献   

4.
The influence of repetitive dynamic fatiguing contractions on the neuromuscular characteristics of the human triceps surae was investigated in 10 subjects. The load was 50% of the torque produced during a maximal voluntary contraction, and the exercise ended when the ankle range of motion declined to 50% of control. The maximal torque of the triceps surae and the electromyographic (EMG) activities of the soleus and medial gastrocnemius were studied in response to voluntary and electrically induced contractions before and after the fatiguing task and after 5 min of recovery. Reflex activities were also tested by recording the Hoffmann reflex (H reflex) and tendon reflex (T reflex) in the soleus muscle. The results indicated that whereas the maximal voluntary contraction torque, tested in isometric conditions, was reduced to a greater extent (P < 0.05) at 20 degrees of plantar flexion (-33%) compared with the neutral position (-23%) of the ankle joint, the EMG activity of both muscles was not significantly reduced after fatigue. Muscle activation, tested by the interpolated-twitch method or the ratio of the voluntary EMG to the amplitude of the muscle action potential (M-wave), as well as the neuromuscular transmission and sarcolemmal excitation, tested by the M-wave amplitude, did not change significantly after the fatiguing exercise. Although the H and T reflexes declined slightly (10-13%; P < 0.05) after fatigue, these adjustments did not appear to have a direct deleterious effect on muscle activation. In contrast, alterations in the mechanical twitch time course and postactivation potentiation indicated that intracellular Ca(2+)-controlled excitation-contraction coupling processes most likely played a major role in the force decrease after dynamic fatiguing contractions performed for short duration.  相似文献   

5.
The effect of a 120-day 6° head-down tilt (HDT) bed rest with and without countermeasures on the mechanical properties of the human triceps surae muscle was studied in eight healthy young women subjects. One group [n = 4, mean age 31.5 (SEM 1.7) years] underwent a 120-day HDT only and a second group [n = 4; mean age 28.0 (SEM 1.1) years] underwent HDT with countermeasures (physical training). The results showed that the contractile properties of the skeletal muscle studied changed considerably. After HDT without countermeasures the maximal voluntary contraction (MVC) had decreased by 36% (P < 0.05), and the electrically evoked tetanic tension at 150 Hz (P o) and isometric twitch contraction (P t) had decreased by 24% (P < 0.02) and 12% (P < 0.05), respectively. Time- to-peak tension (TPT) of the twitch had significantly increased by 14% (P<0.05), but half-relaxation time (1/2RT), and total contraction time (TCT) had decreased by 19% (P<0.05) and 18% (P<0.05), respectively. The difference between P o and MVC expressed as a percentage of P o and referred to as force deficiency (FD), was also calculated. The FD had increased by 40% (P<0.001). The rate of increase of voluntary contractions calculated according to a relative scale had significantly reduced, but for the electrically evoked contraction no substantial changes were observed. After HDT with countermeasures TPT, 1/2RT and TCT of the twitch had decreased by 4%, 7%, 19%, respectively in relation to the control condition. Training had caused a decrease of 3% (P>0.05) in MVC, and P t, and in P o of 14%, and of 9% (P>0.05), respectively. The FD had decreased significantly by 10% (P<0.02). The rate of increase of electrically evoked tetanic tension did not change significantly during HDT with countermeasures but the rate of increase in isometric voluntary tension development was increased. Physical training provided a reserve of neuromuscular function, which attenuated the effect of bed rest. The experimental findings indicated that neural as well as muscle adaptation occurred in response to HDT with countermeasures. Accepted: 7 November 1997  相似文献   

6.
We studied the effect of fatigue of the mm. gastrocnemius-soleus on the H reflex elicited by transcutaneous stimulation of n. tibialis and recorded from the m. soleus; healthy 18-to 34-year-old volunteers were tested. Fatigue was evoked by long-lasting (6 to 9 min) voluntary tonic static sole flexion of the foot (ankle extension) with a force equal to 75% of the maximum voluntary contraction (MVC). The amplitude of H reflex significantly (P < 0.001) decreased to about 60% of the initial value immediately after the period of fatiguing effort. Within 2 to 3 min, it relatively rapidly recovered and reached about 90% of the control, and this was followed by a period of slow recovery to about 96–97% of the initial value 30 min after conditioning fatigue. We suppose that the initial period of suppression of the H reflex results to a considerable extent in an increase in the intensity of presynaptic inhibition of transmission from Ia afferents due to tonic activation of high-threshold (groups III and IV) afferent fibers induced by intensive fatigue-related metabolic changes in the muscles. More long-lasting (tens of minutes) changes are related to slow reverse development of direct effects of fatigue-induced biochemical shifts in the muscle. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 426–431, September–December, 2006.  相似文献   

7.
This study compared twitch contractile properties of plantar flexor muscles among three groups of 12 subjects each: endurance and power trained athletes and untrained subjects. The posterior tibial nerve was stimulated by supramaximal square wave pulses of 1-ms duration. Power trained athletes had higher twitch maximal force, maximal rates of force development and relaxation and also maximal voluntary contraction (MVC) force. The trained subjects had a smaller twitch maximal force: MVC force ratio and shorter twitch contraction and half-relaxation times than the untrained subjects with no significant differences between the two groups. Thus, the short time for evoked twitches in the athletes compared to the untrained subjects would seem unrelated to the type of training. It is concluded that power training induces a more evident increase of muscle force-generating capacity and speed of contraction and relaxation than endurance training. Accepted: 24 April 1999  相似文献   

8.
《Chronobiology international》2013,30(4-5):631-643
Variations in force and electromyographic (EMG) activities of skeletal muscles with the time-of-day have been previously described, but not for a postural muscle, submitted to daily postural and locomotor tasks. In this article, mechanical performances, EMGs, and the ratio between these parameters, i.e., the neuromuscular efficiency (NME), were measured on the triceps surae (TS) of eight subjects, two times each day, at 6:00 and 18:00 h. NME was evaluated under different experimental conditions (electrically induced contractions, reflex contractions, maximal and submaximal voluntary isometric contractions, and during a natural movement, a drop jump) to determine whether mechanisms, peripheral or central in origin, were responsible for the eventual changes in NME with time-of-day. To calculate NME in induced conditions (NMEind), a supramaximal electrical stimulus was applied to the tibial nerve, and the maximal M wave of TS (TS Mmax) and the amplitude of the twitch tension (PtMmax) in response to this electrical stimulation were quantified. TS Mmax was significantly lower in the evening (mean gain value ?10.7 ± 5.5%, p < 0.05), whereas PtMmax was not significantly modified. NMEind (PtMmax/TS Mmax) was significantly higher in the evening (mean gain of 17.6 ± 5.8%, p < 0.05), and this increase was necessarily peripheral in origin. Secondly, maximal tendon taps were applied to the Achilles tendon in order to quantify at the two times-of-day the reflexes in response to a mechanical stimulus. The maximal reflex, TS Tmax/Mmax (%), the peak amplitude of the twitch tension associated to this tendon jerk (PtTmax), and the corresponding NME (NMEreflex = PtTmax/TS Tmax/Mmax) were not affected by time-of-day, indicating that reflex excitability did not present daytime variations when tested under these conditions. Voluntary isometric contractions were required under maximal (MVC) and submaximal (25% MVC) conditions, and the corresponding torques and TS EMG were measured. MVC was higher in the evening (mean gain: 8.6 ± 2.7%, p < 0.05) and TS EMGmax (normalized with regard to TS Mmax) also increased in the evening but not significantly; thus, NMEMVC was not modified. At 25% of MVC, TS EMG was significantly higher in the evening (mean gain of 23 ± 13.9%, p < 0.05) and a trend for a lower NME25%MVC in the evening was observed, a result probably representative of a higher muscle fatigue state in the evening. Finally, to test the muscle capacities during a natural task, a NME index was calculated during a drop jump (DJ). The NMEDJ was defined as the ratio between jump height and mean amplitude of TS EMG (% of TS Mmax) between the drop and the jump. Both jump height and NMEDJ were significantly higher in the evening (mean gains of 10.9 ± 4.5% and 15.7 ± 7.4%, respectively, p < 0.05). In conclusion, daytime changes in the efficiency of postural muscles seem to depend on both peripheral and central mechanisms. According to the experimental conditions, NME of the postural muscle could increase, remain constant, or even decrease in the evening, and this result may reflect reverse effects of better contractile capacities and higher fatigue state.  相似文献   

9.
The purpose of the present study was to investigate whether the mechanical properties (i.e. force strain relationship) of the triceps surae tendon and aponeurosis relate to the performed sport activity in an intensity-dependent manner. This was done by comparing sprinters with endurance runners and subjects not active in sports. Sixty-six young male subjects (26+/-5 yr; 183+/-6 cm; 77.6+/-6.7 kg) participated in the study. Ten of these subjects were adults not active in sports, 28 were endurance runners and 28 sprinters. All subjects performed isometric maximal voluntary plantar flexion contractions (MVC) on a dynamometer. The distal aponeuroses of the gastrocnemius medialis (GM) was visualised by ultrasound during the MVC. The results showed that only the sprinters had higher normalised stiffness (relationship between tendon force and tendon strain) of the triceps surae tendon and aponeurosis and maximal calculated tendon forces than the endurance runners and the subjects not active in sports. Furthermore, including the data of all 66 examined participants tendon stiffness correlated significantly (r=0.817, P<0.001) with the maximal tendon force achieved during the MVC. It has been concluded that the mechanical properties of the triceps surae tendon and aponeurosis do not show a graded response to the intensity of the performed sport activity but rather remain at control level in a wide range of applied strains and that strain amplitude and/or frequency should exceed a given threshold in order to trigger additional adaptation effects. The results further indicate that subjects with higher muscle strength possibly increase the margin of tolerated mechanical loading of the tendon due to the greater stiffness of their triceps surae tendon and aponeurosis.  相似文献   

10.
Abstract

Purpose:?Localized mechanical vibration, applied directly to a muscle, is known to have powerful, duration-dependent effects on the muscle spindle’s reflex arc. Here, the conditioning of the function of the spindle reflex arc via vibration was examined with considerations for use as a non-invasive, sensorimotor research tool.

Methods:?Muscle spindle function was examined with patellar tendon taps prior to and following exposure to muscle vibration applied to the quadriceps femoris for acute (<5?s) and prolonged (20?min) durations. Surface electromyography (sEMG), torque, and accelerometry signals were obtained during the taps to quantify various measures of reflex magnitude and latency.

Results:?Our findings suggest that acute vibration had no effect on normalized reflex torque or sEMG amplitude (p?>?0.05), but increased total reflex latency (p?=?0.022). Alternatively, prolonged vibration reduced normalized reflex torque and sEMG amplitude (p?<?0.001), and increased reflex latency (p?<?0.001).

Conclusions:?Our findings support the use of prolonged vibration as a practical means to decrease the function of the muscle spindle’s reflex arc. Overall, this suppressive effect was evident in the majority of subjects, but the extent was variable. This approach could potentially be used to help delineate the muscle spindle’s role in various sensory or motor tasks in which more direct measures are not feasible. Acute vibration, however, did not potentiate muscle spindle function as hypothesized. Rather, our results suggest that acute vibration increased total reflex latency. Accordingly, potential mechanical and neurophysiological mechanisms are discussed.  相似文献   

11.
The effect of long-latency reflex modulation on the performance of a quick adjustment movement following a muscle stretch was studied in 26 healthy male subjects. When the subjects felt a sudden angle displacement in the direction of a wrist extension they were required to make an adjustment movement by moving a handlebar, held in the hand, to align with a target position as quickly and as accurately as possible. The index of performance (adjustment time) was the time taken to move the handle to the target position from stretch onset. A DC torque motor was used to evoke electromyographic (EMG) reflex responses on a wrist flexor. Averaging of the rectified EMG, recorded from surface electrodes placed over the flexor, showed short- and long-latency reflexes (M1 and M2 components). For all subjects, the amplitudes of the reflex components decreased during the adjustment movement because the target position for this study was fixed to the extension side of the wrist joint. The decrease in the M2 component, which is considered to be a transcortical reflex, was significantly larger than the decrease in the M1 component, which is spinal reflex. The main finding was of a positive correlation between the length of adjustment time and the degree of reduction of M1 and M2 with the adjustment movement (r = 0.602 for M1, P < 0.01; r = 0.850 for M2, P < 0.001). Moreover, there were correlations between the consistency of the voluntary response onset and the degree of M2 decrease (r = 0.577, P < 0.01), and between the consistency of the voluntary response onset and the length of the adjustment time (r = 0.603, P < 0.01). Therefore, we have concluded that the subjects who were able to perform adjustment movements within a short time could modulate the long-latency reflex of the muscle involved in such movements in order to make the function of their voluntary muscle activity more effective, and thus were able to respond appropriately. Accepted: 19 February 1997  相似文献   

12.
M-wave modulation at relative levels of maximal voluntary contraction   总被引:1,自引:0,他引:1  
Frequency (mean and median power frequency, f and f m) and amplitude (average rectified and root mean square values, ARV and rms), parameters of the M-wave, and the dorsiflexor force parameters of the anterior tibial muscles were measured in seven healthy human subjects. Intermittent, voluntary contractions at relative intensities (40%, 60%, and 80%) of maximal voluntary contraction (MVC) were performed in conjunction with electrical stimulation. The M-wave parameter changes were measured over the course of the isometric contractions. At higher force levels, M-wave potentiation was observed as increases in both ARV and rms. The ARV augmentation attained levels as high as 206.1 (SD 7.4)% of resting values after both initial and final contractions of 80% MVC, reaching statistical significance (P < 0.01). The f and f m failed to show a significant difference at any level of contraction. It was surmised that potentiation of the M-wave was the result of an increased contribution of muscle fibre type IIb recruited during higher contraction levels, reflecting the change to larger, deeper innervating motoneurons as the intensity of contraction, as a percentage of MVC, rose. Recruitment of type IIb fibres, which have been reported to have a higher energy potential and frequency content, were thought to reflect changes in the local, excitability threshold of some motor units as the force intensity increased during the intermittent voluntary contractions. It is suggested that the M-wave elicited after contractions has the potential to reflect, to some extent, motor unit recruitment changes resulting from the preceding contractions, and that through comparisons of M-wave amplitude parameters, contributions of varying fibre types over the course of a contraction may be indicated.  相似文献   

13.
The purpose of this investigation was to determine the mechanomyographic (MMG) amplitude and mean power frequency (MPF) versus torque (or force) relationships during isokinetic and isometric muscle actions of the biceps brachii. Ten adults (mean +/- SD age = 21.6 +/- 1.7 years) performed submaximal to maximal isokinetic and isometric muscle actions of the dominant forearm flexors. Following determination of isokinetic peak torque (PT) and the isometric maximum voluntary contraction (MVC), the subjects randomly performed submaximal step muscle actions in 10% increments from 10% to 90% PT and MVC. Polynomial regression analyses indicated that MMG amplitude increased linearly with torque during both the isokinetic (r2 = 0.982) and isometric (r2 = 0.956) muscle actions. From 80% to 100% of isometric MVC, however, MMG amplitude appeared to plateau. Cubic models provided the best fit for the MMG MPF versus isokinetic (R2 = 0.786) and isometric (R2 = 0.940) torque relationships, although no significant increase in MMG MPF was found from 10% to 100% of isokinetic PT. For the isometric muscle actions, however, MMG MPF remained relatively stable from 10% to 50% MVC, increased from 50% to 80% MVC, and decreased from 80% to 100% MVC. The results demonstrated differences in the MMG amplitude and MPF versus torque relationships between the isokinetic and isometric muscle actions. These findings suggested that the time and frequency domains of the MMG signal may be useful for describing the unique motor control strategies that modulate dynamic versus isometric torque production.  相似文献   

14.
It has been known for a long time that the steady-state isometric force after muscle stretch is bigger than the corresponding force obtained in a purely isometric contraction for electrically stimulated and maximal voluntary contractions (MVC). Recent studies using sub-maximal voluntary contractions showed that force enhancement only occurred in a sub-group of subjects suggesting that force enhancement for sub-maximal voluntary contractions has properties different from those of electrically-induced and maximal voluntary contractions. Specifically, force enhancement for sub-maximal voluntary contractions may contain an activation-dependent component that is independent of muscle stretching. To address this hypothesis, we tested for force enhancement using (i) sub-maximal electrically-induced contractions and stretch and (ii) using various activation levels preceding an isometric reference contraction at 30% of MVC (no stretch). All tests were performed on human adductor pollicis muscles. Force enhancement following stretching was found for all subjects (n = 10) and all activation levels (10%, 30%, and 60% of MVC) for electrically-induced contractions. In contrast, force enhancement at 30% of MVC, preceded by 6 s of 10%, 60%, and 100% of MVC was only found in a sub-set of the subjects and only for the 60% and 100% conditions. This result suggests that there is an activation-dependent force enhancement for some subjects for sub-maximal voluntary contractions. This activation-dependent force enhancement was always smaller than the stretch-induced force enhancement obtained at the corresponding activation levels. Active muscle stretching increased the force enhancement in all subjects, independent whether they showed activation dependence or not. It appears that post-activation potentiation, and the associated phosphorylation of the myosin light chains, might account for the stretch-independent force enhancement observed here.  相似文献   

15.
The purpose of this study was to investigate systematically if complementary knowledge could be obtained from the recordings of electromyography (EMG) and mechanomyography (MMG) signals. EMG and MMG activities were recorded from the first dorsal interosseous muscle during slow concentric, isometric, and eccentric contraction at 0, 25, 50, 75 and 100% of the maximal voluntary contraction (MVC). The combination of the EMG and MMG recordings during voluntary concentric-isometric-eccentric contraction showed significant different non-linear EMG/force and MMG/force relationships (P<0.001). The EMG root mean square (rms) values increased significantly from 0 to 50% MVC during concentric and isometric contraction and up to 75% MVC during eccentric contraction (P<0.05). The MMG rms values increased significantly from 0 to 50% MVC during concentric contraction (P<0.05). The non-linear relationships depended mainly on the type and the level of contraction together with the angular velocity. Furthermore, the type of contraction, the contraction level, and the angular velocity influenced the electromechanical efficiency evaluated as the MMG to EMG ratio (P<0.05). These results highlight that EMG and MMG provide complementary information about the electrical and mechanical activity of the muscle. Different activation strategies seem to be used during graded isometric and anisometric contraction.  相似文献   

16.
With fatigue, force generation may be limited by several factors, including impaired impulse transmission and/or reduced motor drive. In 5-min isometric maximal voluntary contraction, no decline was seen in the peak amplitude of the tibialis anterior compound muscle mass action potential (M wave) either during or immediately after the voluntary effort, provided maximal nerve stimulation was retained. For first dorsal interosseous (FDI) muscle, M wave amplitudes declined by 19.4 +/- 1.6% during the first 2 min but did not change significantly thereafter, despite the continued force reduction (up to 94% in 5 min for both muscles). The duration of the FDI M waves increased (greater than 30%), suggesting that the small decline in amplitude was the result of increased dispersion between the responses of different motor units. Some subjects kept FDI maximally activated throughout, but when they used tibialis anterior, twitch occlusion and tetanic muscle stimulation showed that most subjects were usually only able to do so for the first 60 s and thereafter only during brief "extra efforts." Thus force loss during isometric voluntary contractions sustained at the highest intensities results mainly from failure of processes within the muscle fibers.  相似文献   

17.
This cross-sectional, observational study was undertaken to examine whether voluntary activation failure could contribute to the persisting weakness observed in some patients with treated idiopathic inflammatory myositis. In 20 patients with myositis of more than six months' duration (5 males, 15 females; mean [± 1 SD] age 53 [11] years) and 102 normal subjects (44 males, 58 females; mean age 32 [8] years), isometric maximum voluntary contractions (MVCs) of the dominant quadriceps femoris (QF) were quantified. Absolute MVC results of normal subjects and patients were then normalised with respect to lean body mass (force per units of lean body mass), giving a result in Newtons per kilogram. Based on mass-normalised force data of normal subjects, patients were arbitrarily stratified into "weak" and "not weak" subgroups. During further MVC attempts, the "twitch interpolation" technique was used to assess whether the QF voluntary activation of patients was complete. This technique relies on the fact that, because muscle activation is incomplete during submaximal voluntary contractions, electrical stimulation of the muscle can induce force increments superimposed on the submaximal voluntary force being generated. No between-gender differences were seen in the mass-normalised MVC results of healthy subjects, so the gender-combined results of 6.6 (1.5) N/kg were used for patient stratification. No between-gender difference was found for mass-normalised MVCs in patients: males 5.4 (3.2) and females 3.0 (1.7) N/kg (p > 0.05). Mass-normalised MVCs of male patients were as great as those of normal subjects (p > 0.05), but mass-normalised MVCs of female patients were significantly smaller than those of the normal subjects (p < 0.001). Only one of the six "not weak" patients exhibited interpolated twitches during electrical stimulation, but six of the 14 "weak" patients did, the biggest twitches being seen in the weakest patient. That interpolated twitches can be induced in some myositis patients with ongoing QF weakness during supposed MVCs clearly suggests that voluntary activation failure does contribute to QF weakness in those patients.  相似文献   

18.
Eight subjects were studied on four occasions following ingestion of a 300-ml solution containing either sodium citrate (C, 0.4g · kg–1 body mass) or placebo (P, sodium chloride 0.045 g · kg–1 body mass), at local barometric pressure (N, P B approximately 740 mmHg, 98.7 kPa) or hypobaric hypoxia (HH, P B = 463 mmHg, 61.7 kPa). At 2 h after ingestion of the solution, the subjects performed prolonged isometric knee-extension at 35% of the maximal voluntary contraction (MVC) measured either in N or HH. Results showed that ingestion of C led to an improvement in muscle endurance (P < 0.01). However, this increase in endurance time for knee extensor muscles was only significant in N ( +22%, P < 0.05, compared to + 15%, NS, at N and HH, respectively). Following ingestion of sodium citrate, pre-exercise bicarbonate concentrations and pH levels were significantly higher than those measured after P ingestion. A significant treatment effect was observed for blood lactate concentrations with values higher for C than for P after 4, 6 and 10 min of recovery (P < 0.05). Electromyographic signals (EMG) were obtained from the vastus lateralis muscle during the prolonged isometric contraction at 35% MVC. The mean power frequency (MPF) significantly decreased in time under both N-P and N-C conditions. In HH, no significant decrease in MPF was observed with time. The results suggest that C ingestion was an ergogenic aid enhancing endurance during a sustained isometric contraction. In addition, it is suggested that fatigue during prolonged isometric contraction in HH was not directly related to factors determining the EMG signs of fatigue.  相似文献   

19.
Changes in the excitability of the human triceps surae muscle short latency stretch reflexes were investigated in six male subjects before and after 4 weeks of progressive two-legged hopping training. During the measurements the subjects performed 2-Hz hopping with: preferred contact time (PCT) and short contact time. The following reflex parameters were examined before and after the training period: the soleus muscle (SOL) Hoffmann-reflex (H-reflex) at rest and during hopping, the short latency electromyogram (EMG) components of the movement induced stretch reflex (MSR) in SOL and medial gastrocnemius muscle (MG), and the EMG amplitude of the SOL and MG tendon reflexes (T-reflexes) elicited at rest. The main results can be summarized as follows: the SOL T-reflex had increased by about 28% (P < 0.05) after training while the MG T-reflex was unchanged; the SOL MSR (always evident) and the MG MSR (when observable) did not change in amplitude with training, and before training the SOL H-reflex in both hopping situations was significantly depressed to about 40% of the reference value at standing rest (P < 0.05). After training the H-reflex during PCT hopping was no longer depressed. As the value of the measured mechanical parameters (the total work rate, joint angular velocity and the ankle joint work rate) was unchanged after training in both hopping situations, the reflex changes observed could not be ascribed to changes in the movement pattern. To explain the observed changes, hypotheses of changes in the excitability of the stretch reflex caused by the training were taken into consideration and discussed. Accepted: 22 May 1998  相似文献   

20.
Acute hormone responses of growth hormone (GH), total and free testosterone (TT and FT) and cortisol (C) to heavy resistance isometric exercise were examined in ten young men [YM 26.5 (SD 4.8) years] and ten old men [OM 70.0 (SD 3.7) years]. Loading conditions of the same relative intensity were created for the lower and upper extremity actions separately as well as for both of them together – lower extremity exercise (LE; knee extension), upper extremity exercise (UE; bench press extension), and lower and upper extremity exercise (LUE) performed simultaneously in a seated position. Single voluntary maximal isometric actions lasting for 5 s were performed repeatedly for ten repetitions (with a recovery of 5 s) for a total of four sets. The recovery time between the sets was 1 min. Each exercise led to large acute decreases in maximal isometric force in both YM (P < 0.001) and OM (P < 0.001) ranging from 41% to 26% with no significant differences between the groups. Serum GH concentrations increased in both YM (P < 0.05–0.01) and OM (P < 0.05) but the postexercise value in YM during LE was greater (P < 0.05) than for OM. The TT increased (P < 0.01–0.001) in YM in all three exercises, while in OM the increase occurred only during LE (P < 0.01). The exercises led to increases in FT in YM (P < 0.05 for LE and LUE), while in OM the increase occurred only during LUE (P < 0.05). The pre and postexercise FT were greater in YM (P < 0.001) than in OM. No significant changes occurred in C either in YM or in OM. The blood lactate concentrations increased during the exercises in both YM (P < 0.001) and OM (P < 0.05–0.001) but the postexercise values during LE and LUE in YM were greater (P < 0.05) than in OM. The present data would indicate that the responses of GH, TT and FT to heavy resistance isometric exercise are lowered with increasing age. The reduced acute hormone response together with the lowered basal values in FT in the older men compared to the young men may indicate decreased anabolic effects on muscles and may explain in part the loss of muscle mass and strength associated with aging. Accepted: 18 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号