首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
北京鸭线粒体基因组全序列测定和分析   总被引:1,自引:0,他引:1  
线粒体DNA作为遗传标记,已在家鸡(Gallus gallus)和家鹅(Anser anser)的研究中取得了重大进展,而对家鸭(Anas platyrhychos domesticus)的研究却很少.本研究参照近源物种线粒体基因组序列设计15对引物,通过PCR扩增、测序、拼接,获得北京鸭(A.platyrhychos)线粒体基因组全序列,初步分析其特点和各基因的定位.结果显示,北京鸭线粒体基因组全长16 604 bp,碱基组成为29.19%A、22.20%T、15.80%G、32.81%C,包含13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个非编码控制区(D-loop),基因组成及排列顺序与其他鸟类相似.基于线粒体D-loop区全序列,用N-J法构建了7种雁形目鸟类系统进化树,结果表明,北京鸭与绿头鸭(A.platyrhychos)系统进化关系较近.  相似文献   

2.
银环蛇线粒体基因组全序列分析   总被引:4,自引:0,他引:4  
根据GenBank公布的蛇类物种线粒体基因序列和已知的引物序列,总共设计和合成了9对引物.采用保真度较高的Ex-Taq酶,以总基因组DNA为模板进行PCR扩增,产物纯化后进行TA克隆和步移测序,拼接后获得了全长17 144 bp银环蛇线粒体基因组全序列.其共编码13种蛋白质、2种rRNA和22种tRNA.这些基因没有内含子,基因间排列紧密,仅有极少或完全没有核苷酸,甚至相互重叠.除了含有2个调控线粒体基因组复制和转录的控制区外,其余基因在长度和位置等方面与其它脊椎动物均具有较高的同源性.  相似文献   

3.
黑麂线粒体基因组序列分析   总被引:6,自引:0,他引:6  
采用PCR产物直接测序方法测定了黑麂线粒体基因组全序列 ,初步分析了其基因组特点并定位了各基因的位置 .结果显示 :黑麂的线粒体基因组全序列长度为 1 6 35 7bp ,可编码 2 2种tRNA、2种rRNA、1 3种蛋白质 ,碱基组成及基因位置与小麂、赤麂和其它哺乳类动物的线粒体基因组相似 ;模拟电子酶切图谱与先前的报道基本一致 ;基于细胞色素b的全基因序列 ,分别以最大简约法、N J法、最大似然数法与其它 1 4种鹿类动物的相应序列进行了聚类分析 ,构建出相似的系统进化树 :初步确定了麂亚科动物在鹿科中处于与鹿亚科、北美鹿亚科并列的进化地位 .在此基础上 ,进一步以黑麂、赤麂、小麂的线粒体编码RNA和编码蛋白质的基因序列构建系统进化树 ,分析了三者的亲缘关系 .结果表明 :黑麂和赤麂亲缘关系较近 ,是较新的物种 ,而小麂是较为原始的物种  相似文献   

4.
藏鸡线粒体全基因组序列的测定和分析   总被引:11,自引:0,他引:11  
童晓梅  梁羽  王威  徐树青  郑晓光  汪建  于军 《遗传》2006,28(7):769-777
通过PCR扩增,测序,拼接,获得藏鸡(Tibetan Chicken)线粒体全基因组序列并进行数据分析处理。藏鸡线粒体全基因组序列全长16783bp,共有13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个D-loop区。模拟电子酶切结果显示,藏鸡DraI酶的酶切结果和先前报道的原鸡,茶花鸡,尼西鸡和大理漾濞黄鸡的酶切结果都不相同,为藏鸡特有。基于D-loop区全序列和13个蛋白质编码基因序列,采用N-J算法与原鸡属4个种,3个亚种和3个家鸡品系构建系统进化树:初步确定藏鸡起源于红原鸡,与家鸡中的来航鸡、白洛克鸡亲缘关系最近,但是藏鸡的进化与来航鸡、白洛克鸡这两个家鸡品系又显得相对独立。推测可能原因是藏鸡的祖先在进入高原以后处于相对封闭的环境,从而形成了独特群体遗传特性。  相似文献   

5.
赤麂线粒体全基因组的序列和结构   总被引:4,自引:0,他引:4  
提取赤麂细胞株总DNA,参照我们实验室已测定的同属动物小麂线粒体全基因组序列设计引物,PCR扩增、测序、拼接,获得赤麂线粒体全基因组序列并进行生物信息学分析。赤麂线粒体全基因组序列全长16354bp。定位了22个tRNA基因、2个rRNA基因、13个蛋白编码基因和1个D-loop区。赤麂与小麂及其它哺乳动物线粒体的基因组结构相同,它们的序列同源性都较高。  相似文献   

6.
参照近缘物种的线粒体基因序列设计并筛选得到8对引物,结合TA克隆和步移测序获得了全长17227bp的短尾蝮蛇线粒体基因组全序列.与多数蛇类线粒体基因组类似,其共编码包括13个蛋白、2个rRNA和22个tRNA在内的37个基因,另外还包含2个非编码的富含AT的控制区.基因间排列紧凑,多数基因间间隔极短甚至发生重叠.除nad1、cox1和nad3外,多数蛋白编码基因均以ATG作为起始密码子,终止密码子的使用则存在TAA、AGA、AGG和不完全的T4种情况.基于合并的19个tRNA基因序列组合数据采用NJ、MP和ME3种算法对21种蛇进行了初步的系统发育分析,结果表明,各主要分类单元之间的亲缘关系与前人基于形态学、线粒体12SrRNA和cytb基因序列研究的结论完全一致,这证实了基于合并的线粒体tRNA基因序列进行蛇类物种DNA分子系统学研究的可行性.  相似文献   

7.
社鼠(Niviventer confucianus)属于啮齿目(Rodentia)、鼠科(Muridae)、白腹鼠属(Niviventer),关于该物种的分子系统学研究极少。为获取社鼠线粒体基因组全序列,提取其基因组总DNA,参照近缘物种线粒体基因组全序列设计34对特异性引物,利用PCR扩增全部片段后进行测序,之后对其基因组组成及结构特点进行了初步分析。结果表明,社鼠线粒体基因组全序列长16 281 bp(GenBank收录号:KJ152220),包含22个tRNA基因、13个蛋白质编码基因、2个rRNA基因和1个非编码控制区;基因组核苷酸组成为34.0%A、28.6%T、24.9%C、12.5%G。将所得序列与社鼠近缘物种(川西白腹鼠、小家鼠、褐家鼠)的线粒体全基因组进行比较,结果显示,四个物种的线粒体基因组虽然在基因组大小、部分tRNA二级结构、部分蛋白质编码基因的起始或终止密码子及控制区长度和碱基组成上有差异,但基因组结构和序列特征方面都具有较高的相似性。四个物种线粒体全基因组间的遗传距离显示,社鼠与川西白腹鼠距离最近,而与小家鼠距离最远。该研究为利用线粒体全基因组信息进行啮齿类分子系统学研究提供了有价值的资料。  相似文献   

8.
本研究对眼镜蛇科广西华珊瑚蛇(Sinomicrurus peinani)线粒体基因组序列进行测定与分析,并探究其与近缘种的系统发育关系。结果表明,广西华珊瑚蛇线粒体基因组是一条全长19 477 bp的环状DNA,基因组碱基构成为A(33.4%)、T(28.1%)、C(26.6%)和G(11.9%)。共编码38个基因,包含2个核糖体RNA(rRNA)基因、22个转移RNA(tRNA)基因、13个蛋白质编码基因及1个线粒体基因控制区(D-loop)。13个蛋白质编码基因均采用AUG作为起始密码子,UAA和UGA作为终止密码子;蛋白质编码基因编码频率较高的氨基酸分别为亮氨酸(Leu)、异亮氨酸(Ile)、苏氨酸(Thr)和丝氨酸(Ser);相对密码子使用度(RSCU)频率最高的4个密码子依次是CGA、UGA、CUA和CCA。22个tRNA,除tRNASer(一臂两环)外其他均可形成典型三叶草结构。基于眼镜蛇科线粒体基因组系统发育分析结果表明,与广西华珊瑚蛇关系最密切的是中华珊瑚蛇(Sinomicrurus macclellandi),其次是孟加拉眼镜蛇(Naja kaouthia)与眼镜王蛇(Ophiophagus hannah)。  相似文献   

9.
&#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2014,38(2):320-327
采用普通PCR扩增、SHOT-GUN测序、软件拼接首次获得了池蝶蚌(Hyriopsis schlegelii)线粒体基因组全序列。线粒体基因组全长为15939 bp,由13个蛋白质编码基因、22个tRNA基因、2个SrRNA基因和28个长度为1393 bp的非编码区组成;除ND3-ND5、ND4L、ATP6、ATP8、COX1-COX3、tRNA-D、tRNA-H之外,其他大多数基因在L链编码。池蝶蚌线粒体全基因组序列、蛋白编码基因、tRNA基因、rRNA基因及非编码区的A+T含量分别为60.36%、59.84%、61.7%、60.23%及62.5%,与其他淡水蚌类一致,均表现出A+T偏好性,淡水蚌类线粒体基因组长度的差异主要表现在非编码区长度的差异。池蝶蚌mtDNA的COX2-12SrRNA区域基因排列存在差异,是ND3、tRNAHis、tRNAAla、tRNASer1、tRNASer2、tRNAGlu、ND2、tRNAMet 8个基因发生重组造成。22个tRNA基因都具有典型的三叶草二级结构,tRNA-E与 tRNA-W间的非编码区含有一个ORF区,而控制区并未发现。从GenBank上下载的14种双壳纲贝类的mtDNA序列构建的系统进化树,显示池蝶蚌与三角帆蚌亲缘关系最近。研究结果为淡水珍珠蚌线粒体基因重排及进化特征提供理论依据。    相似文献   

10.
乌龟线粒体全基因组序列和结构分析   总被引:3,自引:0,他引:3  
龟鳖类同其它类群脊椎动物的系统进化关系一直存在争论。为进一步从分子水平上探讨这一问题,本文参照近源物种的线粒体基因组,设计了16对特异引物,采用PCR产物直接测序法测得了乌龟线粒体基因组全序列。结果表明:乌龟线粒体基因组序列全长16576bp,包括2个rRNA基因、22个tRNA基因、13个蛋白质编码基因和1个非编码控制区。乌龟线粒体基因组结构和基因排列顺序与其它龟鳖类相同,在“WANCY区”包含一个“stemloop”结构,ND3基因174位点存在一个额外插入的腺苷酸(A)。本文通过比较分析结构基因在主要脊椎动物类群中的排列顺序,探讨了龟鳖类与其它主要脊椎动物类群的系统进化关系  相似文献   

11.
12.
目的:从中华鳖脾脏、肝脏、肠道构建的SMARTer cDNA文库中克隆中华鳖白细胞介素21(IL-21)基因的cDNA。方法:采用cDNA末端快速扩增(RACE)法克隆中华鳖IL-21基因cDNA序列,并利用生物学软件进行生物信息学分析。结果:中华鳖IL-21 cDNA长874 bp,其编码产物包含135个氨基酸残基,二级结构主要包括α螺旋、延伸链、无规则卷曲和β转角,三级结构包括信号肽和IL-15结构域。系统进化分析表明其与鸟类首先聚类,其次为哺乳类。以人IL-21为模型,构建了中华鳖IL-21的3D结构模型。结论:从生物信息学分析可知我们所获序列为中华鳖IL-21 cDNA,为深入研究中华鳖IL-21及相关通路奠定了基础。  相似文献   

13.
为探究GHSR基因多态性对中华鳖(Pelodiscus sinensis)生长相关性状的影响,采用直接测序法在GHSR基因5'侧翼和3'侧翼上筛选SNPs位点,共检测到5个单核苷酸多态性位点:A335T、G397T、A527G、A13482C和T13526A。随机选取同批繁殖的1冬龄200只中华鳖用直接测序法进行SNPs位点的分型,并分析与生长性状的相关性。检测结果显示,所有SNP位点均符合Hardy-Weinberg平衡状态(p>0.05)。方差分析显示,A336T位点的AT、TT基因型的体重、背甲长、背甲宽和裙边宽4项生长数据均显著高于AA基因型。A13482C位点的AC基因型的体重、背甲长、背甲宽和裙边宽4项数据均显著高于AA基因型(p<0.05)。研究表明,本实验在GHSR基因上获得的这些SNP位点可能影响着中华鳖的生长性状或与之紧密连锁,可为中华鳖分子辅助育种提供助力与参考。  相似文献   

14.
鳖的形态学统计分析   总被引:2,自引:0,他引:2  
利用生物统计学的方法对鳖的形态进行了分析 ,结果如下 :鳖的年龄 (Y)与体重 (X)的一元回归方程为 :Y =0 0 0 736 1X 0 4 534,年龄 (Y)与腹甲长 (X)的一元回归方程为 :Y =0 2 4 59X- 0 5480 ;雌雄鳖尾长差异显著 (P <0 0 5) ,雄鳖体重 (Y)对尾长 (X)的一元回归方程为 :Y =2 56 6 4X - 82 8 6 0 ;野生鳖体重 (Y)对背甲长 (X1)、体高 (X5)、头长 (X8)、眼径 (X9)、口裂 (X12 )等 13个形态学指标的最优多元回归方程为 :Y =880 51 6 79 16X1- 10 6 0 91X5 146 4 72X8- 82 96 6 4X9- 3142 0 9X12 ;控温条件下快速生长鳖体重 (Y)对腹甲宽 (X4 )、体高 (X5)、头发 (X8)、眼间距(X10 )、尾长 (X13)等 13个形态学指标的最优多元回归方程为 :Y =- 97 4 6 38 99X4 30 2 6X5-2 9 34X8 140 83X10 - 30 4 2X13.  相似文献   

15.
大壁虎线粒体基因组全序列及其结构(英文)   总被引:3,自引:1,他引:2  
采用长PCR扩增、克隆和引物步行等方法,测定了大壁虎(Gekkogecko)线粒体基因组全序列。序列全长16435bp,共有13个蛋白质编码基因、2个rRNA基因和22个tRNA基因。基因组的组成、顺序、编码链的选择、tRNA的结构、较低的碱基G含量、对碱基T的偏好以及GC和AT偏斜,都与大部分脊椎动物相同或相近。但有些特征揭示了壁虎类的原始性蛋白质编码基因密码子第3位表现为对碱基A的偏好,更接近两栖类和鱼类而不是羊膜动物;标准终止密码子(TAA)只出现于3个蛋白质编码基因中,比大部分脊椎动物少。tRNA基因核苷酸长度为63~76nt,除了tRNACys和tRNASer(AGY)缺少D臂,其余的二级结构均呈典型的三叶草状。  相似文献   

16.
boule基因为DAZ基因家族成员之一,是动物生殖细胞特异表达基因。在哺乳动物中,boule基因的缺失会引起精子生成障碍而导致雄性不育。在无脊椎动物秀丽线虫(Caenorhabditis elegans)中,boule基因同源物的缺失会引起其卵子发生障碍而导致雌性不育。龟鳖动物是最古老的爬行类,是从无羊膜卵到羊膜卵动物飞跃的过渡物种。相比于哺乳类及一些无脊椎动物,目前关于龟鳖动物生殖细胞发育模式的研究还非常有限。因此,本文以中华鳖(Pelodiscus sinensis)为研究对象,以期揭示boule基因对龟鳖动物生殖细胞发育分化的调控作用。首先,利用特异引物克隆获得中华鳖boule基因的cDNA序列,共1 005 bp,其中,3′端非编码区57 bp,开放阅读框948 bp,共编码315个氨基酸。氨基酸序列多重比对分析显示,中华鳖与绿海龟(Chelonia mydas)同源性最高,达92%,与小鼠(Mus musculus)的同源性达83%,与果蝇(Drosophila melanogaster)的同源性达53%,与青鳉(Oryzias latipes)的同源性达42%。反转录实时定量PCR(RT-qPCR)分析结果显示,中华鳖boulem RNA主要在性腺组织精巢和卵巢中表达,而在其他体细胞组织中几乎检测不到表达。原位杂交结果显示,中华鳖boule m RNA在两性生殖细胞中特异表达,且在不同分化时期的生殖细胞中呈动态表达。在精巢中,boule m RNA在初级精母细胞中表达最强,在精原细胞和次级精母细胞中表达较弱,在精子细胞和精子中难以检测到表达信号;在卵巢中,boule mRNA在初级卵母细胞中表达信号最强且信号在初级卵母细胞胞质中均匀分布,生殖细胞发育进入卵母细胞生长期后,信号开始聚集在核周胞质,随着卵母细胞的成熟,信号逐渐变弱。本研究结果表明,boule基因可能在中华鳖两性生殖细胞的减数分裂过程中均具有重要的调控作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号