首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
1 Seedlings of mountain birch Betula pubescens ssp. czerepanovii were grown outdoors, under different environmental conditions, during their first growing season at Abisko, northern Sweden. Winter survival of seedlings was studied in relation to their growth and nitrogen (N) acquisition rate during the previous growing season.
2 Effects of fertilization and soil temperature on seedling growth and N acquisition were analysed in a factorial experiment including seven fertilizer levels and two temperature treatments. Effects of shading and neighbours ( B. p. ssp. czerepanovii and Empetrum hermaphroditum ) on seedling growth and N economy were evaluated in another experiment including five different neighbour interaction treatments.
3 An increase in either soil temperature or fertilization rate caused the birch seedlings to take up more N and grow faster. The relative growth rate and rate of N accumulation during the 12-week growing season were closely related to winter survival: at a relative growth rate of 2.0% and 3.8% day−1, the winter survival of mountain birch seedlings was estimated to be 5% and 95%, respectively. This range corresponded to a relative N accumulation rate between 2.4% and 4.3% day−1.
4 The relative N accumulation rate was clearly reduced by shading and by the plant–plant interactions studied. The effects of shading and birch neighbours but not of Empetrum on the rate of N accumulation could be explained by lower soil temperature.
5 Nutrient supply, soil temperature, vegetation shade and, presumably, allelopathy affect the N acquisition of first-year mountain birch seedlings, and thus also influence their winter survival. Soil temperature might be the major influence on the survival rate, due to its strong influence on the root N uptake rate.  相似文献   

2.
Abstract: Seedlings of mountain birch ( Betula pubescens ssp. czerepanovii ), a subarctic tree, mainly survive and establish in early-successional patches with low vegetation cover. In particular, during the first years after seed germination, a rapid seedling growth rate is important for winter survival. Seedling growth rate is controlled by plant nitrogen (N) concentration. On a year-round perspective, the N concentration is influenced by N uptake rate during both summer and winter and by N loss during autumn. The aim of the present study was to evaluate the effects of autumn N loss and winter N uptake for seedling growth during summer. The study used young seedlings growing in situ in northern Sweden. Since the growth rate of whole plants cannot be measured in situ, it was estimated using a simple, empirical seedling growth model. The model was based on data from controlled experiments and validated using growth data from a field study. The field study included sequential seedling harvests which were carried out at two sites differing in altitude, from autumn 1994 until autumn 1996. The seedling growth model was used to simulate the effects on growth rate of autumn N losses and winter N uptake. It was found that a decrease in the amount of N lost in autumn and an increase in the amount of N taken up during winter could enhance the growth rate of mountain birch seedlings by the same order of magnitude as an increase in growing season soil temperature by 1 to 2 K.  相似文献   

3.
 Growth patterns and nitrogen economy were studied in pot-grown seedlings of mountain birch subjected to different ultraviolet radiation under both laboratory and outdoor conditions at Abisko in northern Sweden. In the laboratory, nutrient supply, temperature, humidity, ultraviolet radiation-A (UV-A, 320–400 nm) and B (UV-B, 280–320 nm) were controlled, while photosynthetically active radiation (PAR, 400–700 nm) and photoperiod varied naturally. Under outdoor conditions nutrient supply was controlled, and the irradiation treatments were ambient and above-ambient UV-B using additional fluorescent lamps. Mountain birch nitrogen economy was affected by increased ultraviolet radiation, as reflected by a changed relationship between plant growth and plant nitrogen both in the laboratory and outdoors. In the laboratory enhanced UV-A decreased leaf area per unit plant biomass (leaf area ratio) but increased biomass productivity, both per unit leaf area (leaf area productivity) and per unit leaf nitrogen (leaf nitrogen productivity). Low levels of UV-B affected growth patterns and nitrogen economy in a similar way to enhanced UV-A. High levels of UV-B clearly decreased relative growth rate and nitrogen productivity, as leaf area ratio, leaf area productivity and leaf nitrogen productivity were all decreased. Under outdoor conditions above-ambient levels of UV-B did not alter growth or biomass allocation traits of the seedlings, whilst nitrogen productivity was increased. Mountain birch seedlings originating from different mother trees varied significantly in their responses to different ultraviolet radiation. Received: 10 April 1997 / Accepted: 19 September 1997  相似文献   

4.
We grew seedlings of two co-occurring high elevation tree species in controlled light and nitrogen (N) environments to examine the effect on foliar N and P concentrations and the resulting correlation with photosynthesis and growth. Foliar N concentrations in both heart-leaf paper birch (Betula cordifolia) and balsam fir (Abies balsamea) seedlings were greater in low light treatments than in high light treatments. P concentrations, however, were lower in birch and fir foliage grown in low light than in high light. N-availability had no effect on foliar N in birch but tended to increase N concentration in fir needles at all but 100% ambient light. N-availability had no effect on P concentration in fir seedlings, but high N decreased foliar P in birch. There was a positive relationship between foliar N-concentration (mg g–1) and mass-based maximum photosynthetic rate (Asat) in birch seedlings and a corresponding growth response to increased N-availability (suggesting N-limitation). Fir photosynthesis exhibited a positive correlation up to 22 mg g–1 – N and a negative correlation above that point, suggesting that high N concentrations may be detrimental to photosynthesis in the fir seedlings. There was no significant effect of N-treatment on growth.  相似文献   

5.
Respiration for maintenance and growth ofReynoutria japonica ecotypes from altitudes of 700 and 2420 m on Mt Fuji were measured in two controlled thermal conditions. The maintenance respiration of the high-altitude ecotype at both 15 and 25°C was significantly (1.7-fold) higher than that of the low-altitude ecotype, whereas growth respiration was independent of both ecotype and temperature. The temperature coefficient (Q10) of the maintenance respiration was about 1.9 in both ecotypes. The results show that there is ecotypic differentiation in the performance of maintenance respiration. It is suggested that the high maintenance respiration of the high-altitudeR. japonica ecotype is advantageous in severe upland environments but disadvantageous in a warm lowland climate in terms of carbon economy.  相似文献   

6.
A Definition of Optimum Nutrient Requirements in Birch Seedlings   总被引:1,自引:0,他引:1  
Birch seedlings (Betula verrucosa Enrh.) were grown in nutrient solutions with pH varied in the range 2.5 to 6.8 or temperature varied in the range 2.5 to 35°C. The criteria for maximum growth previously established for birch seedlings were used and maintained by means of automatic pH and conductivity titrations with stock solutions containing the optimum nutrient proportions. Both nitrogen sources, NH4 and NO3, were present in the solutions. Growth rate was maximum or close to maximum between pH 4.0 and 6.8, whether kept at a specific level or allowed to vary between the extremes. At pH 3.5 and lower, the calcium uptake was decreased and root damage was observed. The seedlings has also a high dry matter content and obviously an unsatisfactory water balance. pH 2.5 was rapidly lethal. Growth rate was linearly correlated with solution temperature up to 20°C. Temperatures above 30°C, especially in the range 32.5 to 35°C, resulted in rapid decrease in growth rate. The nutrient contents in the seedlings were strongly affected by solution temperature in the low as well as in the high range when expressed on a dry weight basis. However, this effect was almost entirely attributable to changes in dry matter content. When expressed on a fresh weight basis, nutrient uptake and nutrient status of the seedlings appeared to be optimum throughout, although a variation remained since the varying dry matter content is included in the fresh weight basis. The results indicate, in agreement with the literature, that disturbed water uptake and water balance is the way in which growth is affected by root medium temperature. Similarly, extremely low pH levels in the nutrient solution meant root damage, although birch seedlings appear comparatively insensitive to pH variations. Thus, the growth technique used supplied the seedlings with adequate nutrients, so that the criteria used in the definition of nutrient requirements in birch seedlings are valid within wide ranges of solution pH and temperature; and other factors than nutrition determine growth.  相似文献   

7.
The response of five Lycopersicon species to 14 days moderate chilling at 10°C under low light (75 μmol m?2 s?1) and subsequent recovery was examined by measurements on relative shoot growth rate, leaf dry matter and carbohydrate content, CO2-exchange and pigment composition. In addition, the susceptibility to dark chilling and temperature dependence of chloroplast electron transport were analyzed by Chl a fluorescence measurements. During 7 days of recovery at 25/20°C subsequent to chilling, the domestic tomato Lycopersiconesculentum (L.) Mill. cv. Abunda exhibited a small capacity for shoot regrowth (39%) compared to the low-altitude wild species L. pimpinellifolium (Jusl.) Mill. PI187002 (82%) and three wild species originating from high altitude: L. peruvianum Mill. LA 385 (92%), L. hirsutum Humb. & Bonpl. LA 1777 (67%) and L. chilense Dunn. LA 1970 (71%). The inter-specific differences in chilling sensitivity at the chloroplast level, analyzed by the decline of the maximum rate of induced Chl fluorescence rise (FR) after 40 h at 0°C and the temperature at which qP reached the value 0.5, correlated in general well with the measured differences at whole plant level, measured by the post-chilling regrowth capacity. Chilling resulted in a larger increase in leaf dry matter content in L. esculentum (45%) and L. pimpinellifolium (37%) compared to the high-altitude species (13–16%), which could be attributed to a stronger accumulation of both soluble sugars and starch in mature leaves of the domestic and low-altitude species. Photosynthetic and dark respiration rates during chilling could not account for this difference. The recovery of photosynthesis was better in the high-altitude species. Chl content per unit leaf area decreased more throughout the experiment in the domestic and low-altitude species (63–73%) than in their relatives from high altitude (8–29%). In response to chilling, the domestic and low-altitude species showed an increase in the total xanthophyll cycle pool on Chl basis, whereas the de-epoxidation state of the xanthophyll cycle increased in the high-altitude wild species. Both responses resulted in increased zeaxanthin levels in chilled leaves of all Lycopersicon species.  相似文献   

8.
O. Osonubi  W. J. Davies 《Oecologia》1978,32(3):323-332
Summary Young seedlings of English Oak, Quercus robur L., and Silver Birch, Betula verrucosa Ehrl., were subjected to a number of consecutive periods during which water was withheld. During one 14-day period leaf-and soil-water potentials and leaf- and root-solute potentials of two groups of plants were sampled at noon of each day. One group of plants was watered every day while water was withheld from the other group. Solute accumulation in roots and leaves of oak seedlings subjected to water stress resulted in maintenance of turgor and high leaf conductance as the soil dried. In birch seedlings turgor was only maintained by stomatal closure at high soil water potential.Fourteen consecutive water stress cycles greatly reduced the growth of birch seedlings but had little effect on oak seedlings other than to alter root morphology. Water stress treatment resulted in the production of long thin roots in this plant. Stomatal behaviour in oak and birch seedlings during the 14-week stress period was consistent with observed changes in leaf water and solute potentials. Daily solute accumulation in oak leaves was presumably responsible for the maintenance of plant growth as water potentials fell.  相似文献   

9.
Functional and structural leaf traits of Quercus ilex seedlings originated from parent plant acorns from three different localities in Italy were studied. Acorns from three different localities along a gradient from the north to the south of Italy: Nago (site A) in the Garda Lake region at the northernmost limit of holm oak distribution area in Italy, Castelporziano near Rome (site B), at the centre of the distribution area, and Frassanito near Otranto (site C), in a drier area in the south of Italy. Morphological and anatomical leaf traits differed between the provenances with a higher leaf mass area, total leaf thickness and the ratio of palisade to mesophyll thickness in the driest provenance (C seedlings). These traits gave C seedlings a higher water use efficiency, relative water content at predawn and photosynthetic rates than the other provenances in high air temperature conditions. The smaller leaf area of A seedlings seemed to have a higher photosynthetic capacity in low air temperature conditions than B and C seedlings. Growth analysis underlined a higher shoot relative growth rate in B seedlings explaining the highest shoot length and leaf number per shoot. The plasticity index [sensu Valladares et al. (2000) Ecology 81:1925–1936] for physiological traits of the seedlings was higher than morphological and anatomical traits, but the largest differences in plasticity among ecotypes were found for morphological and anatomical traits. The ecotypes of Q. ilex studied here seemed to integrate, at leaf level, functions of growth activity, morphology and physiology related to the climate of the original provenance.  相似文献   

10.
The aim of this investigation was to estimate the optimum nutrient requirements and responses to low relative nutrient addition rates of seedlings of two important broadleaf tree species in China, Populus simonii Carr. and Paulownia tomentosa (Thunb.) Steud. In preliminary experiments the optimum nutrient proportions were estimated under high concentration conditions. The nutrients consumed were replaced by means of daily additions determined by pH and conductivity titrations without changing the nutrient solutions. A relatively high K level was needed in relation to nitrogen; higher than in birch or grey alder seedlings. To obtain a high relative growth rate, suitable proportions by weight were 100 N:70 K:14 P:7 Ca:7 Mg for the Populus seedlings and 100 N:75 K:20 P:8 Ca:9 Mg for the Paulownia seedlings.
In studies of nutrient stress responses the relative nutrient addition rate was used as the treatment variable under low conductivity conditions. The responses and relationships were similar to those described for birch, grey alder and Salix . The relative addition rate, and there was also a strong linear regression between relative growth rate and nitrogen status. Relative growth rates were high and the maximum weight increase was about 19% day−1 in Populus and over 25% day−1 in Paulownia . The nitrogen productivity of Paulownia was very high, 0.26 g dry weight (g N)−1 h−1, and for Populus it was 0.16 g dry weight (g N)−1 h−1.  相似文献   

11.
The natural variation in quantity and quality of light modifies plant morphology, growth rate and concentration of biochemicals. The aim of two growth‐room experiments was to study the combined effects of red (R) and far‐red (FR) light and ultraviolet‐B (UV‐B) radiation on the concentrations of leaf phenolics and growth and morphology of silver birch (Betula pendula Roth) seedlings. Analysis by high‐performance liquid chromatography showed that the leaves exposed to supplemental FR relative to R contained higher concentrations of total chlorogenic acids and a cinnamic acid derivative than the leaves treated with supplemental R relative to FR. In contrast, concentration of a flavonoid, quercetin 3‐galactoside, was higher in the R + UV‐B leaves than in the FR + UV‐B leaves. The UV‐B induced production of kaempferols, chlorogenic acids and most quercetins were not modified by the R : FR ratio. Growth measurements showed that the leaf petioles and stems of FR seedlings were clearly longer than those of R seedlings, but leaf area was reduced by UV‐B radiation. Results of these experiments show that exposure of silver birch seedlings to supplemental FR compared to R leads to fast elongation growth and accumulation of phenolic acids in the leaves.  相似文献   

12.
Peterson AG  Neofotis PG 《Oecologia》2004,141(4):629-640
In this study we apply new extensions of classical growth analysis to assess the interactive effects of elevated CO2 and differences in water availability on the leaf-nitrogen and transpiration productivities of velvet mesquite (Prosopis velutina Woot.) seedlings. The models relate transpiration productivity (biomass gained per mass of water transpired per day) and leaf-nitrogen productivity (biomass gain per unit leaf N per day) to whole-plant relative growth rate (RGR) and to each other, allowing a comprehensive hierarchical analysis of how physiological and morphological responses to the treatments interact with each other to affect plant growth. Elevated CO2 led to highly significant increases in N and transpiration productivities but reduced leaf N per unit leaf area and transpiration per unit leaf area, resulting in no net effect of CO2 on the RGR of seedlings. In contrast, higher water availability led to an increase in leaf-tissue thickness or density without affecting leaf N concentration, resulting in a higher leaf N per unit leaf area and consequently a higher assimilatory capacity per unit leaf area. The net effect was a marginal increase in seedling RGR. Perhaps most important from an ecological perspective was a 41% reduction in whole-plant water use due to elevated CO2. These results demonstrate that even in the absence of CO2 effects on integrative measures of plant growth such as RGR, highly significant effects may be observed at the physiological and morphological level that effectively cancel each other out. The quantitative framework presented here enables some of these tradeoffs to be identified and related directly to each other and to plant growth.  相似文献   

13.
We studied the ability of tree seedlings to respond to two environmental factors, elevated ultraviolet B (UVB) radiation and availability of nitrogen (N), at the beginning of their development. Seeds of two birch species, Betula pubescens Ehrh. (common white birch) and B. pendula Roth (silver birch), were germinated and the seedlings grown in an experimental field in eastern Finland. The experimental design consisted of a constant 50% increase in UVB radiation (including a slight increase in UVA), a UVA control (a slight increase in UVA) and a control. The seedlings were fertilized with three levels of N. The experiment lasted for 2 months; aboveground biomass was measured and the most mature leaf of each seedling was taken for the analyses of phenolics. Growth of the seedlings was not significantly affected by enhanced UVB, but was increased by increasing N. Elevated UVB induced significant changes in phenolic compounds. Quercetin glycosides were accumulated in the leaves of both species in response to UVB; this is considered to be a protective response. However, the direction of the responses of individual phenolics to different N regimens differed. In addition, concentration of soluble condensed tannins was lower at moderate N than that at lower levels of N in both species; on the contrary, in B. pubescens the concentration of insoluble condensed tannins was highest at moderate N. No significant interaction between UV and N was detected, and the responses of the two species were highly similar to UVB, while the responses to N regimens varied slightly more between species.  相似文献   

14.
Summary Leaves of well-watered and mildly water-stressed seedlings of Betula pendula Roth. and Gmelina aroborea L. were subjected to a range of vapour pressure deficits (VPD) between 10 and 24 kPa. The stomatal conductance of birch seedlings decreased as VPD was increased and at least in mildly-stressed seedlings this response seemed to be closely linked to the water status of the air rather than to the bulk water status of the plant. Mild water stressing enhanced the degree of the stomatal humidity-response and resulted in a significant increase in the efficiency of water use at high VPD. Stomata of Gmelina were apparently insensitive to variation in VPD, but were more sensitive to a decrease in bulk leaf water status than were stomata of birch. Water use efficiency of Gmelina seedlings was comparatively high, even when VPD was high and the stomata were fully open.  相似文献   

15.
Summary Growth of hydroponically cultivated birch seedlings (Betula pendula Roth.) at sub- and supra-optimum potassium supply rates was investigated. Potassium was supplied either as a relative addition rate (r k = 5, 10, 15 and 20% increase day-1) or as fixed concentrations (0.2, 3, 6, 12 and 15 mM) in the culture solution. After an acclimation period the growth rate of the seedlings in the suboptimum treatments reached values close to the treatment variable, the relative rate of K-addition. Deficiency symptoms, in the form of chlorosis and necroses along the leaf margins, developed initially in all suboptimum treatments, but very few new symptoms appeared once the seedlings had reached the phase of steady-state nutrition and growth. At supra-optimum K-supply levels, i.e. at 0.2–15 mM K in the culture solution, no symptoms of deficiency or toxicity developed, and the relative growth rate of the seedlings remained maximum. The relative growth rate of the seedlings was linearly related to the plant K-status for K contents ranging from 0.2 to 1.0% of dry weight (DW). At higher internal K-concentrations, 1.0–3.0% DW, no further increase in relative growth rate was achieved. A shortage of K resulted in a decrease in the net assimilation rate. This effect was counterbalanced by the absence of shift in he leaf weight ratio as well as by the production of relatively thin leaves. The fraction of dry matter allocated to roots decreased in K-limited plants, as did the leaf contents of soluble carbohydrates and starch.  相似文献   

16.
  • 1 The induced resistance of the subarctic mountain birch Betula pubescens ssp. czerepanovii is a well‐characterized phenomenon, whereas the induced responses of Betula nana L., one of the parental species of mountain birch, have not yet been characterized. Betula nana is more resistant to several classes of insectivorous herbivores than the mountain birch, although the mechanisms responsible for the better ability to resist herbivores are not known.
  • 2 The present study aimed to determine the metabolic changes that are induced by early season herbivory in B. nana leaves and to study the effects of rapidly induced resistance on the growth of Epirrita autumnata larvae.
  • 3 Defoliation of B. nana was accomplished by E. autumnata larvae and leaf samples for chemical analyses were collected when the defoliating larvae were at their third and fifth instar. At the same time, laboratory assays for the growth and consumption rates of E. autumnata larvae were conducted.
  • 4 The wounding of leaves by E. autumna larvae induced the production of ellagitannins (ETs) in B. nana. Intriguingly, the concentrations of protein‐bound amino acids were also induced by herbivory; however, an increase in proteins was not mirrored in the growth rate of larvae, which was less on the induced foliage. The decreased growth rate of larvae was apparently linked to the increased concentrations of oxidatively‐active ETs and the high concentration of ETs may explain the better resistance of this parental species compared with the hybrid mountain birch with its lower levels of ETs.
  相似文献   

17.
选取海南尖峰岭热带山地雨林中不同功能类群的豆科树木幼苗(代表低氮需求的长脐红豆Ormosia balansae Drake、中氮需求的荔枝叶红豆Ormosia semicastrata Hance f. litchifolia How和高氮需求的猴耳环Archidendron clypearia(Jack)I.C.Nielsen)为对象,设置5个浓度梯度的氮(N)添加和2个浓度梯度的磷(P)添加养分控制实验,研究苗木的生长表现。结果显示:(1)氮添加条件下,3个树种幼苗的苗高、总叶面积、根长、根表面积、生物量5个指标对中高浓度氮添加的敏感性大小均为长脐红豆 > 猴耳环 > 荔枝叶红豆;其中,叶总面积对氮肥浓度变化的响应最敏感,长脐红豆的根长、根表面积以及猴耳环根长的响应敏感性次之。(2)长脐红豆和猴耳环幼苗的根冠比受氮肥添加浓度的影响不显著;荔枝叶红豆幼苗的根冠比则随氮肥添加浓度的升高而增大,这种适应策略反映出荔枝叶红豆幼苗对添加中高浓度氮肥有较强的耐受能力。(3)磷添加条件下,长脐红豆和猴耳环幼苗的生长速率为低磷>高磷,表明这2个树种在幼苗阶段为低氮、低磷需求;荔枝叶红豆在低氮处理下的生长速率为高磷>低磷,表明该树种幼苗阶段为低氮、高磷需求。  相似文献   

18.
Large and high nitrogen (N) concentration seedlings frequently have higher survival and growth in Mediterranean forest plantations than seedlings with the opposite traits, which has been linked to the production of deeper and larger root systems in the former type of seedlings. This study assessed the influence of seedling size and N concentration on root growth dynamics and its relation to shoot elongation in Aleppo pine (Pinus halepensis Mill.) seedlings. We cultivated seedlings that differed in size and tissue N concentration that were subsequently transplanted into transparent methacrylate tubes in the field. The number of roots, root depth, and the root and shoot elongation rate (length increase per unit time) were periodically measured for 10 weeks. At the end of the study, we also measured the twig water potential (ψ) and the mass of plant organs. New root mass at the end of the study increased with seedling size, which was linked to the production of a greater number of new roots of lower specific length rather than to higher elongation rate of individual roots. Neither plant size nor N concentration affected root depth. New root mass per leaf mass unit, shoot elongation rate, and pre-dawn ψ were reduced with reduction in seedling size, while mid-day ψ and the root relative growth rate were not affected by seedling size. N concentration had an additive effect on plant size on root growth but its overall effect was less important than seedling size. Shoot and roots had an antagonistic elongation pattern through time in small seedlings, indicating that the growth of both organs depressed each other and that they competed for the same resources. Antagonism between shoot and root elongation decreased with plant size, disappearing in large and medium seedlings, and it was independent of seedling N concentration. We conclude that root and shoot growth but not rooting depth increased with plant size and tissue N concentration in Aleppo pine seedlings. Since production of new roots is critical for the establishment of planted seedlings, higher absolute root growth in large seedlings may increase their transplanting performance relative to small seedlings. The lack of antagonism between root and shoot growth in large seedlings suggests that these plants can provide resources to sustain simultaneous growth of both organs.  相似文献   

19.
Mammalian herbivores commonly alter the concentrations of secondary compounds in plants and, by this mechanism, have indirect effects on litter decomposition and soil carbon and nutrient cycling. In northernmost Fennoscandia, the subarctic mountain birch (Betula pubescens ssp. czerepanovii) forests are important pasture for the semidomestic reindeer (Rangifer tarandus). In the summer ranges, mountain birches are intensively browsed, whereas in the winter ranges, reindeer feed on ground lichens, and the mountain birches remain intact. We analyzed the effect of summer browsing on the concentrations of secondary substances, litter decomposition, and soil nutrient pools in areas that had been separated as summer or winter ranges for at least 20 years, and we predicted that summer browsing may reduce levels of secondary compounds in the mountain birch and, by this mechanism, have an indirect effect on the decomposition of mountain birch leaf litter and soil nutrient cycling. The effect of browsing on the concentration of secondary substances in the mountain birch leaves varied between different years and management districts, but in some cases, the concentration of condensed tannins was lower in the summer than in the winter ranges. In a reciprocal litter decomposition trial, both litter origin and emplacement significantly affected the litter decomposition rate. Decomposition rates were faster for the litter originating from and placed into the summer range. Soil inorganic nitrogen (N) concentrations were higher in the summer than in the winter ranges, which indicates that reindeer summer browsing may enhance the soil nutrient cycling. There was a tight inverse relationship between soil N and foliar tannin concentrations in the winter range but not in the summer range. This suggests that in these strongly nutrient-limited ecosystems, soil N availability regulates the patterns of resource allocation to condensed tannins in the absence but not in the presence of browsing.  相似文献   

20.
Climate warming is expected to increase the seasonal duration of photosynthetic carbon fixation and tree growth in high‐latitude forests. However, photoperiod, a crucial cue for seasonality, will remain constant, which may constrain tree responses to warming. We investigated the effects of temperature and photoperiod on weekly changes in photosynthetic capacity, leaf biochemistry and growth in seedlings of a boreal evergreen conifer, white spruce [Picea glauca (Moench) Voss]. Warming delayed autumn declines in photosynthetic capacity, extending the period when seedlings had high carbon uptake. While photoperiod was correlated with photosynthetic capacity, short photoperiods did not constrain the maintenance of high photosynthetic capacity under warming. Rubisco concentration dynamics were affected by temperature but not photoperiod, while leaf pigment concentrations were unaffected by treatments. Respiration rates at 25 °C were stimulated by photoperiod, although respiration at the growth temperatures was increased in warming treatments. Seedling growth was stimulated by increased photoperiod and suppressed by warming. We demonstrate that temperature is a stronger control on the seasonal timing of photosynthetic down‐regulation than is photoperiod. Thus, while warming can stimulate carbon uptake in boreal conifers, the extra carbon may be directed towards respiration rather than biomass, potentially limiting carbon sequestration under climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号