首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties and role of the enzyme phosphoglycolate phosphatase in the cyanobacterium Coccochloris peniocystis have been investigated. Phosphoglycolate phosphatase was purified 92-fold and had a native molecular mass of approximately 56 kilodaltons. The enzyme demonstrated a broad pH optimum of pH 5.0 to 7.5 and showed a relatively low apparent affinity for substrate (Km = 222 micromolar) when compared to that from higher plants. The enzyme required both an anion and divalent cation for activity. Mn2+ and Mg2+ were effective divalent cations while Cl was the most effective anion tested. The enzyme was specific for phosphoglycolate and did not show any activity toward a variety of organic phosphate esters. Growth of the cells on high CO2 and transfer to air did not result in any significant change in phosphoglycolate phosphatase activity. Competitive inhibition of C. peniocystis triose phosphate isomerase by phosphoglycolate was demonstrated (Ki = 12.9 micromolar). These results indicate the presence of a specific noninducible phosphoglycolate phosphatase whose sole function may be to hydrolyze phosphoglycolate and prevent phosphoglycolate inhibition of triose phosphate isomerase.  相似文献   

2.
P. Hardy  P. Baldy 《Planta》1986,168(2):245-252
Phosphoglycolate phosphatase (EC 3.1.3.18), isolated from maize leaf bundle sheath, was purified 200-fold to a specific activity of about 99 mol mg-1 protein · min-1. The purification procedure included Sephadex G-75 filtration, and diethylaminoethyl-cellulose and Phospho-Ultrogel A6R chromatography. This partially purified enzyme exhibited optimum activity over a broad pH range, from pH 6.3 to pH 8.0. It displayed a very high degree of specificity for phosphoglycolate and required a divalent cation to be active; Mg2+ was the most effective activator. Saturation curves of the Michaelis-Menten type were observed both with phosphoglycolate (Km=0.57 mmol·l-1) and with Mg2+ (Km=0.015 mmol·l-1). The activation constant for Mg2+ was unchanged when the pH was raised from 7.0 to 8.0. These results indicate that variations of stromal pH and Mg2+ during the darklight transition could not directly modifity the activity of the phosphoglycolate phosphatase in maize bundle-sheath chloroplasts. The undissociated protein showed a pI of 4.95, as determined by isoelectric focusing. For the native phosphatase a molecular mass of about 61 500 Da was estimated by polyacrylamide gradient gel electrophoresis. The subunit was found to have a relative molecular mass of 31 500 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is concluded that maize phosphoglycolate phosphatase is a dimer.Abbreviations DEAE diethylaminoethyl - P-glycolate phosphatase phosphoglycolate phosphatase - P-glycolate phosphoglycolate - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)-ethyl[glycine - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

3.
The activity of corn phosphoglycolate phosphatase (EC 3.1.3.18), a bundle sheath chloroplastic enzyme, is modulated, in vitro, both by NADP(H) and adenylate energy charge. The Vmax of the enzyme is increased by NADP (25%) and NADPH (16%) whatever the pH used, 7.0 or 7.9 respective pH of the stroma in the dark and in the light. At both pH, the adenylate energy charge alone has a positive effect with two peaks of activation, characteristics for this enzyme, at 0.2 and a maximum at 0.8 accentuated under nonsaturating concentration of phosphoglycolate. At low energy charge, NADP(H) increased the activation with an additive effect most particularly observed at pH 7.9 under saturating phosphoglycolate concentration; at high energy charge, NADP(H) had a positive or negative effect on the activation, depending on the pH value and the concentrations of substrate and NADP(H).The ferredoxin-thioredoxin system does not regulate the activity since i) DTT addition do not have any effect, ii) the light-reconstituted system containing ferredoxin, ferredoxin-thioredoxin reductase, thioredoxins and thylakoids is not effective either. However, light-dark experiments indicate that phosphophycolate phosphatase can be subjected to a fine tuning of its activity.All these data suggest that light cannot induce a modification of the protein but could exert a tight control of its activity by the intermediate of Mg2+ and substrate concentrations and the levels of metabolites such as NADP(H), ATP, ADP, AMP. So, the regulation of the activity shown, in vitro, by energy charge and NADP(H) might be of physiological significance.Abbreviations AEC adenylate energy charge - DTT dithiothreitol - FBPase fructose 1,6-bisphosphatase - Fd ferredoxin - FTR ferredoxin-thioredoxin reductase - NADP-MDH NADP-malate dehydrogenase - P glycolate-phosphoglycolate - P glycolate phosphatase-phosphoglycolate phosphatase - PSII photosystem II - PPDK pyruvate, Pi dikinase - Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

4.
The development of glycolate pathway enzymes has been determined in relation to photosynthetic competence during the regreening of Euglena cultures. Phosphoglycolate phosphatase and glycolate dehydrogenase rapidly reached maximal levels of activity but the complete development of ribulose 1,5-diphosphate carboxylase and concomitant photosynthetic carbon dioxide fixation were not attained until 72 hours of illumination. Specific inhibitors of protein synthesis showed that the formation of ribulose 1,5-diphosphate carboxylase in both division-synchronized and regreening cultures was prevented by both cycloheximide and d-threo-chloramphenicol, whereas phosphoglycolate phosphatase formation was only inhibited by d-threo-chloramphenicol but not by l-threo-chloramphenicol or cycloheximide. Since cycloheximide prevented ribulose diphosphate carboxylase synthesis and photosynthetic carbon dioxide fixation without affecting phosphoglycolate phosphatase synthesis during regreening, it was concluded that photosynthetic competence was not necessary for the development of the glycolate pathway enzymes. The inhibition of phosphoglycolate phosphatase synthesis by d-threo-chloramphenicol but not by l-threo-chloramphenicol or cycloheximide shows that the enzyme was synthesized exclusively on chloroplast ribosomes, whereas protein synthesis on both chloroplast and cytoplasmic ribosomes was required for the formation of ribulose 1,5-diphosphate carboxylase. Although light is required for the development of both Calvin cycle and glycolate pathway enzymes during regreening it is concluded that the two pathways are not coordinately regulated.  相似文献   

5.
Benzylaminopurine (BA) caused an enhancement of chlorophyll and protein content and a reduced elongation of primary barley leaves. BA did not change the rhythmic pattern of14CO2 fixation and activities of RuBP carboxylase, RuBP oxygenase, glycolate oxidase and phosphoglycolate phosphatase, but the enzyme activities were enhanced and the level of14CO2 fixation was reduced. Light/dark14CO2 evolution ratio was affeoted by BA only in older leaves. BA acts sequentially on the activities of photosynthetic and photorespiratory enzymes.  相似文献   

6.
A Photorespiratory Mutant of Chlamydomonas reinhardtii   总被引:2,自引:1,他引:1       下载免费PDF全文
A mutant strain of Chlamydomonas reinhardtii, designated 18-7F, has been isolated and characterized. 18-7F requires a high CO2 concentration for photoautrophic growth in spite of the apparent induction of a functional CO2 concentrating mechanism in air-adapted cells. In 2% O2 the photosynthetic characteristics of 18-7F and wild type are similar. In 21% O2, photosynthetic O2 evolution is severely inhibited in the mutant by preillumination in limiting CO2, although the apparent photosynthetic affinity for inorganic carbon is similar in preilluminated cells and in cells incubated in the dark prior to O2 evolution measurements. Net CO2 uptake is also inhibited when the cells are exposed to air (21% O2, 0.035% CO2, balance N2) for longer than a few minutes. [14C]Phosphoglycolate accumulates within 5 minutes of photosynthetic 14CO2 fixation in cells of 18-7F. Phosphoglycolate does not accumulate in wild type. Phosphoglycolate phosphatase activity in extracts from air-adapted cells of 18-7F is 10 to 20% of that in wild-type Chlamydomonas. The activity of phosphoglycolate phosphatase in heterozygous diploids is intermediate between that of homozygous mutant and wild-type diploids. It was concluded that the high-CO2 requiring phenotype in 18-7F results from a phosphoglycolate phosphatase deficiency. Genetic analyses indicated that this deficiency results from a single-gene, nuclear mutation. We have named the locus pgp-1.  相似文献   

7.
    
Summary An obviously new phosphoglycolate phosphatase (PGP) gene product (PGP*Sumatra) was detected by use of horizontal starch gel electrophoresis (SGE). The observed phenotype PGP (1-Sumatra) can be distinguished from any known PGP type.  相似文献   

8.
Ribulose 1,5-bisphosphate carboxylase when activated by preincubation with 1 mM bicarbonate and 10 mM magnesium chloride can be further activated ca 20–500% by incubating with 2.5 mM phosphoglycolate depending upon the pH of the preincubation medium. The activation effects were seen only under specific preincubation conditions. The activation by phosphoglycolate was a slow reaction requiring ca 15 min for maximal effect. Even though magnesium was essential for phosphoglycolate activation, concentrations higher than 15 mM progressively inhibited the activation of the enzyme by phosphoglycolate. When added directly to the reaction mixture, phosphoglycolate was a potent inhibitor of the carboxylase activity. Even under preincubating conditions, phosphoglycolate showed slight inhibitory effect at 0.1 mM and activation was observed at concentrations higher than 0.5 mM. The KA value for phosphoglycolate was 2.8 mM.  相似文献   

9.
The protein TA0175 has a large number of sequence homologues, most of which are annotated as unknown and a few as belonging to the haloacid dehalogenase superfamily, but has no known biological function. Using a combination of amino acid sequence analysis, three-dimensional crystal structure information, and kinetic analysis, we have characterized TA0175 as phosphoglycolate phosphatase from Thermoplasma acidophilum. The crystal structure of TA0175 revealed two distinct domains, a larger core domain and a smaller cap domain. The large domain is composed of a centrally located five-stranded parallel beta-sheet with strand order S10, S9, S8, S1, S2 and a small beta-hairpin, strands S3 and S4. This central sheet is flanked by a set of three alpha-helices on one side and two helices on the other. The smaller domain is composed of an open faced beta-sandwich represented by three antiparallel beta-strands, S5, S6, and S7, flanked by two oppositely oriented alpha-helices, H3 and H4. The topology of the large domain is conserved; however, structural variation is observed in the smaller domain among the different functional classes of the haloacid dehalogenase superfamily. Enzymatic assays on TA0175 revealed that this enzyme catalyzed the dephosphorylation of phosphoglycolate in vitro with similar kinetic properties seen for eukaryotic phosphoglycolate phosphatase. Activation by divalent cations, especially Mg2+, and competitive inhibition behavior with Cl- ions are similar between TA0175 and phosphoglycolate phosphatase. The experimental evidence presented for TA0175 is indicative of phosphoglycolate phosphatase.  相似文献   

10.
14CO2 assimilation, RuBP earboxylase and PEP carboxylase activities show cyclic changes during the development of barley leaves. Cyclic changes, but in phase opposition with respect to carboxylating enzymes, are shown by RuBP oxygenase, phosphoglycolate phosphatase, glycolate oxidase and nitrate reductase activities. The oxygenase function of RuBP carboxylase appears to be the primary source of glycolate in young leaves, whereas in old ones glycolate could be supplied from some source in addition to RuBP oxygenase activity.  相似文献   

11.
Pyruvate kinase was extracted from Me2CO-dried tissue of various parts of tomato plants. Recovery of the enzyme was improved by the inclusion of thiols in the extraction medium, and its stability was increased considerably in the presence of glycerol and to a lesser extent tetramethylammonium chloride. A phosphatase was present in the tissue extracts which hydrolyses phosphoenolpyruvate in the absence of added ADP. ATP inhibited pyruvate kinase but stimulated the phosphatase, while Mg2+ stimulated both enzymes. Data obtained suggest that tomato leaf pyruvate kinase has an absolute dependence on monovalent cations for activity, K+ being the principal activator. The phosphatase was inhibited non-selectively by monovalent cations. The total activity of pyruvate kinase and its concentration on a tissue fresh weight basis was greatest in the leaves, activity increasing with the maturity of the tissue. Less enzyme was present in roots, and least in the fruit.  相似文献   

12.
A phosphatase was purified through a combination of ion‐exchange and hydrophobic chromatography followed by native PAGE from Physarum plasmodia. Recently, we demonstrated that this phosphatase isoform has a hydrolytic activity towards the PMLC (phosphorylated light chain of Physarum myosin II) at pH 7.6. The apparent molecular mass of the purified enzyme was estimated at approximately 50 kDa by means of analytical gel filtration. The enzyme was purified 340‐fold to a final phosphatase activity of 400 pkat/mg of protein. Among the phosphorylated compounds tested for hydrolytic activity at pH 7.6, the enzyme showed no activity towards nucleotides. At pH 7.6, hydrolytic activity of the enzyme against PMLC was detected; at pH 5.0, however, no hydrolytic activity towards PMLC was observed. The K m of the enzyme for PMLC was 10 μM, and the V max was 1.17 nkat/mg of protein. Ca2+ (10 μM) inhibited the activity of the enzyme, and Mg2+ (8.5 μM) activated the dephosphorylation of PMLC. Mn2+ (1.6 μM) highly stimulated the enzyme's activity. Based on these results, we concluded that the enzyme is likely to be a phosphatase with hydrolytic activity towards PMLC.  相似文献   

13.
3-Phosphoglycerate phosphatase and phosphoglycolate phosphatase were found in leaves of all 52 plants examined. Activities of both phosphatases varied widely between 1 to 20 micromoles per minute per milligram chlorophyll. Plants were grouped into two categories based upon the relative ratio of activity of 3-phosphoglycerate phosphatase to phosphoglycolate phosphatase. This ratio varied between 2:1 to 4:1 in the C4-plants except corn leaves which had a low level of 3-phosphoglycerate phosphatase. This ratio was reversed and varied between 1:2 to 1:6 in all C3-plants except one bean variety which had large amounts of both phosphatases. By differential grinding procedures for C4 plants a major part of the 3-phosphoglycerate phosphatase was found in the mesophyll cells and P-glycolate phosphatase in the bundle sheath cells. Phosphoglycolate phosphatase, but not 3-phosphoglycerate phosphatase, was located in chloroplasts of C3- and C4- plants. Formation of 3-phosphoglycerate phosphatase increased 4- to 12-fold during greening of etiolated sugarcane leaves. This cytosol phosphatase displayed a diurnal variation in sugarcane leaves by increasing 50% during late daylight hours and early evening. It is proposed that the soluble form of 3-phosphoglycerate phosphatase is necessary for carbon transport between the bundle sheath and mesophyll cells during photosynthesis by C4-plants. In C3- and C4-plants this phosphatase initiates the conversion of 3-phosphoglycerate to serine which is an alternate metabolic pathway to glycolate metabolism and photorespiration.  相似文献   

14.
Intracellular protein phosphatase activity has been identified in the yeast Yarrowia lipolytica. This activity was maximal early in its exponential growth phase, and it was enhanced by Pi-deficiency of the culture medium. On a Pi-deficient medium, the major protein phosphatase was purified. This enzyme was dissociated with 80% ethanol treatment, its activity was slightly increased (30%) with heparine and largely enhanced (1.5 to 3-fold) with polycations. This enzyme could be classified as a type 2A protein phosphatase. It is composed of a catalytic subunit and other subunits. Its optimum pH value is 7.2, the apparent Km for casein is 37 μM and the apparent velocity 3.6 pmol hydrolyzed 32Pi min−1 pmol−1 enzyme.  相似文献   

15.
A large number of bacteria were searched for the activity of the synthesis of pyridoxine 5′-phosphate by the transphosphorylation between pyridoxine and p-nitrophenyl phosphate. Several properties of the transphosphorylation by the partially purified enzyme prepared from one of the isolated bacteria, Escherichia freundii K–1, were investigated accompanying with phosphatase activity. The behavior of the phosphotransferase and phosphatase activities in various reaction conditions were almost parallel. It was pointed out that the transphosphorylation might be catalyzed by the function of acid phosphatase. The phosphoryl donor specificity for the enzyme system was found to be broad.

The enzyme which catalyzed the transphosphorylation of pyridoxine accompanying with the hydrolyzation of phosphoryl donor substrates was purified and crystallized from the cell free extract of Escherichia freundii K–1. The purification procedures involved heat treatment, ammonium sulfate fractionation and DEAE-cellulose, hydroxylapatite, and CM-sephadex column chromatographies. The crystalline enzyme showed the sedimentation coefficient of 7.5 S and the diffusion coefficient of 6.15 × 10?7 cm2/sec. The molecular weight was calculated to be 120,000. Several properties of the purified enzyme were also investigated. It was recognized that the transphosphorylation of pyridoxine might be catalyzed by the action of acid phosphatase.  相似文献   

16.
M. Godeh  J. Udvardy  G. L. Farkas 《Planta》1981,152(5):408-414
Ascorbic acid (AA) increased the phosphatase activity (pH 6.8) in 10,000 g supernatants from Anacystis nidulans. The enzyme activated by AA was deactivated by dehydroascorbic acid (DHAA). The modulation by AA/DHAA of phosphatase activity in Anacystis appears to be specific; a number of other redox compounds, known to modulate other enzymes, had no effect on the Anacystis phosphatase. A purified phosphatase preparation from Anacystis was also deactivated by DHAA. In contrast, the purified enzyme was not activated by AA, suggesting that a factor mediating the effect of AA was lost during purification. Another factor was found to protect the purified phosphatase against deactivation by DHAA. The enzyme was characterized as a phosphatase with a broad substrate specificity, an apparent molecular weight of 19,000, and a pH optimum of 6.0–7.0. Dialysis of the enzyme preparation against EDTA abolished the phosphatase activity which could be restored by Zn2+ ions and partially restored by Co2+ ions. Crude extracts also contained a latent enzyme, the phosphatase activity of which could be detected in the presence of Co2+ ions only. Zn2+ ions did not activate this enzymatically inactive protein. The Co2+-dependent phosphatase had an apparent mol. wt. of 40,000, a broad substrate specificity, and an alkaline pH-optimum. Infection of Anacystis cultures by cyanophage AS-1 resulted in a decrease in phosphatase activity. The enzyme present in 10,000 g supernatants from infected cells could not be modulated by the AA/DHAA system.Abbreviations AA ascorbic acid - DEAE diethylamino ethyl - DHAA dehydroascorbic acid - EDTA ethylene-diaminetetra-acetate - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG oxidized glutathione - HMP hexose monophosphate - P i inorganic phosphorus - pNPP p-nitrophenylphosphate - pNP p-nitrophenol - Tris Tris(hydroxymethyl)-aminomethane  相似文献   

17.
Zymomonas mobilis phoA gene encoding alkaline phosphatase was expressed inEscherichia coli CC118 carrying the recombinant plasmid pZAP1. The pH optimum for this enzyme was 9.0 and showed a peak activity at 42°C. This enzyme required Zn2+ for its catalytic activity; however, Mg2+ or Ca2+ significantly affected the activity. This enzyme was found to be ethanolabile, and ethanol inhibition was reversed by addition of Zn2+. Kinetics ofZ. mobilis alkaline phosphatase production inE. coli CC118 (pZAP1) showed that the enzyme activity was growth associated and localized in the cellular fraction, and the maximum activity was found in the stationary phase.  相似文献   

18.
Summary Choline, betaine and N,N-dimethylglycine as the sole carbon and nitrogen source induced a periplasmic acid phosphatase activity in Pseudomonas aeruginosa. This enzyme produced the highest rates of hydrolysis in phosphorylcholine and phosphorylethanolamine among the various phosphoric esters tested. At saturating concentrations of Mg2+, the Km values were 0.2 and 0.7 mM for phosphorylcholine and phosphorylethanolamine respectively. At high concentrations both compounds were inhibitors of the enzyme activity. The K inf1 sups values for phosphorylcholine and phosphorylethanolamine were 1.0 and 3.0 mM respectively. The higher catalytic efficiency was that of phosphorylcholine. Considering these results it is possible to suggest that the Pseudomonas aeruginosa acid phosphatase is a phosphorylcholine phosphatase. The existence of this activity which is induced jointly with phospholipase C by different choline metabolites, in a high phosphate medium, suggests that the attack of Pseudomonas aeruginosa on the cell host may also be produced under conditions of high phosphate concentrations, when the alkaline phosphatase is absent.  相似文献   

19.
Seven enzymes participating in glycolate metabolism were demonstrated to be present in crude extract of the brown alga Spatoglossum pacificum Yendo. These were phosphoglycolate phosphatase, glycolate oxidase, glutamate-glyoxylate aminotransferase, serine hydroxymethyltransferase, amino acid-hydroxy-pyruvate aminotransferase, hydroxypyruvate reductase and catalase. Malate synthase, which is involved in glycolate metabolism in the xanthophycean alga, could not be detected. On demonstration of subcellular distribution of glycolate oxidizing enzymes by linear sucrose density gradient centrifugation, glycolate oxidase was detected in the same fraction at a density of 1.23 g cm?3 with catalase: that is, the marker enzyme of peroxisome and serine hydroxymethyltransferase was found in the same fraction at a density of 1.21 g cm?3 with isocitrate dehydrogenase, the marker of mitochondria. From the present data, it is proposed that the brown alga Spatoglossum possesses the ability to metabolize glycolate to glycerate via the pathway which may be similar to that of higher plants.  相似文献   

20.
A protein phosphatase activity has been demonstrated in nuclei of rat ventral prostate utilizing 32P-labelled phosvitin as a model acidic phosphoprotein substrate. This phosphoprotein phosphatase has a pH optimum of 6.7, is unaffected by the sulphydryl protecting agent 2-mercaptoethanol, and requires a divalent cation for maximal activity. Of the various divalent cations tested, Mg2+ is the most effective in reactivating the EDTA-inhibited enzyme. The phosphatase is inhibited by sodium fluoride, sodium oxalate, N-ethylmaleimide, ATP and ADP but is relatively insensitive to ammonium molybdate. Increased ionic strength of the reaction medium also causes a reduction in the enzyme activity, e.g., by 48% at 200 mM sodium chloride. The activity of the acidic phosphoprotein phosphatase did not change significantly at 48 h or 96 h postorchiectomy when expressed per unit of nuclear protein. However, it is reduced by approx. 30% at these times after castration if based on DNA content. The decline in activity per nucleus reflects the decrease in the realtive nuclear protein content observed at 48 h or 96 h post-orchiectomy. This suggests that the decline in the phosphorylation of prostatic nuclear acidic proteins which occurs upon androgen withdrawal is not due to increased nuclear phosphatase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号