首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
2.
3.
4.
Malik HS  Eickbush TH 《Genetics》2000,154(1):193-203
Phylogenetic analyses of non-LTR retrotransposons suggest that all elements can be divided into 11 lineages. The 3 oldest lineages show target site specificity for unique locations in the genome and encode an endonuclease with an active site similar to certain restriction enzymes. The more "modern" non-LTR lineages possess an apurinic endonuclease-like domain and generally lack site specificity. The genome sequence of Caenorhabditis elegans reveals the presence of a non-LTR retrotransposon that resembles the older elements, in that it contains a single open reading frame with a carboxyl-terminal restriction-like endonuclease domain. Located near the N-terminal end of the ORF is a cysteine protease domain not found in any other non-LTR element. The N2 strain of C. elegans appears to contain only one full-length and several 5' truncated copies of this element. The elements specifically insert in the Spliced leader-1 genes; hence the element has been named NeSL-1 (Nematode Spliced Leader-1). Phylogenetic analysis confirms that NeSL-1 branches very early in the non-LTR lineage and that it represents a 12th lineage of non-LTR elements. The target specificity of NeSL-1 for the spliced leader exons and the similarity of its structure to that of R2 elements leads to a simple model for its expression and retrotransposition.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Eukaryotic and prokaryotic genomes encode either Type I or Type II Ribonuclease H (RNH) which is important for processing RNA primers that prime DNA replication in almost all organisms. This review highlights the important role that Type I RNH plays in the life cycle of many retroelements, and its utility in tracing early events in retroelement evolution. Many retroelements utilize host genome-encoded RNH, but several lineages of retroelements, including some non-LTR retroposons and all LTR retrotransposons, encode their own RNH domains. Examination of these RNH domains suggests that all LTR retrotransposons acquired an enzymatically weak RNH domain that is missing an important catalytic residue found in all other RNH enzymes. We propose that this reduced activity is essential to ensure correct processing of the polypurine tract (PPT), which is an important step in the life cycle of these retrotransposons. Vertebrate retroviruses appear to have reacquired their RNH domains, which are catalytically more active, but their ancestral RNH domains (found in other LTR retrotransposons) have degenerated to give rise to the tether domains unique to vertebrate retroviruses. The tether domain may serve to control the more active RNH domain of vertebrate retroviruses. Phylogenetic analysis of the RNH domains is also useful to "date" the relative ages of LTR and non-LTR retroelements. It appears that all LTR retrotransposons are as old as, or younger than, the "youngest" lineages of non-LTR retroelements, suggesting that LTR retrotransposons arose late in eukaryotes.  相似文献   

12.
Computational methods for genome-wide identification of mobile genetic elements (MGEs) have become increasingly necessary for both genome annotation and evolutionary studies. Non-long terminal repeat (non-LTR) retrotransposons are a class of MGEs that have been found in most eukaryotic genomes, sometimes in extremely high numbers. In this article, we present a computational tool, MGEScan-non-LTR, for the identification of non-LTR retrotransposons in genomic sequences, following a computational approach inspired by a generalized hidden Markov model (GHMM). Three different states represent two different protein domains and inter-domain linker regions encoded in the non-LTR retrotransposons, and their scores are evaluated by using profile hidden Markov models (for protein domains) and Gaussian Bayes classifiers (for linker regions), respectively. In order to classify the non-LTR retrotransposons into one of the 12 previously characterized clades using the same model, we defined separate states for different clades. MGEScan-non-LTR was tested on the genome sequences of four eukaryotic organisms, Drosophila melanogaster, Daphnia pulex, Ciona intestinalis and Strongylocentrotus purpuratus. For the D. melanogaster genome, MGEScan-non-LTR found all known ‘full-length’ elements and simultaneously classified them into the clades CR1, I, Jockey, LOA and R1. Notably, for the D. pulex genome, in which no non-LTR retrotransposon has been annotated, MGEScan-non-LTR found a significantly larger number of elements than did RepeatMasker, using the current version of the RepBase Update library. We also identified novel elements in the other two genomes, which have only been partially studied for non-LTR retrotransposons.  相似文献   

13.
Although most non-long terminal repeat (non-LTR) retrotransposons are inserted throughout the host genome, many non-LTR elements in the R1 clade are inserted into specific sites within the target sequence. Four R1 clade families have distinct target specificity: R1 and RT insert into specific sites of 28S rDNA, and TRAS and SART insert into different sites within the (TTAGG)(n) telomeric repeats. To study the evolutionary history of target specificity of R1-clade retrotransposons, we have screened extensively novel representatives of the clade from various insects by in silico and degenerate polymerase chain reaction (PCR) cloning. We found four novel sequence-specific elements; Waldo (WaldoAg1, 2, and WaldoFs1) inserts into ACAY repeats, Mino (MinoAg1) into AC repeats, R6 into another specific site of the 28S rDNA, and R7 into a specific site of the 18S rDNA. In contrast, several elements (HOPE, WISHBm1, HidaAg1, NotoAg1, KagaAg1, Ha1Fs1) lost target sequence specificity, although some of them have preferred target sequences. Phylogenetic trees based on the RT and EN domains of each element showed that (1) three rDNA-specific elements, RT, R6, and R7, diverged from Waldo; (2) the elements having similar target sequences are phylogenetically related; and (3) the target specificity in the R1 clade was obtained once and thereafter altered and lost several times independently. These data indicate that the target specificity in R1 clade retroelements has changed during evolution and is more divergent than has been speculated so far.  相似文献   

14.
15.
Non-LTR retrotransposons are an ancient group of retroelements. Twenty-one clades are distinguished today among non-LTR retrotransposons. The presence of different clades in the genome characterizes the diversity of non-LTR retrotransposons of the organism. This review presents a general picture of the evolution and distribution of different clades of non-LTR retrotransposons among the main taxa of eukaryotic organisms: protozoa, plants, fungi, and metazoa. Introduction in the analysis of new taxa and the use of new bioinformatic and experimental approaches can significantly extend our knowledge about non-LTR retrotransposons and their role in the evolution and functioning of eukaryotic genomes.  相似文献   

16.
17.
Non-long terminal repeat (Non-LTR) retrotransposons represent a diverse and widely distributed group of transposable elements and an almost ubiquitous component of eukaryotic genomes that has a major impact on evolution. Their copy number can range from a few to several million and they often make up a significant fraction of the genomes. The members of the dominating subtype of non-LTR retrotransposons code for an endonuclease with homology to apurinic/apyrimidinic endonucleases (APE), and are thus termed APE-type non-LTR retrotransposons. In the last decade both the number of identified non-LTR retrotransposons and our knowledge of biology and evolution of APE-type non-LTR retrotransposons has increased tremendously.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号