首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Acetylmannosamine (ManNAc) is the first committed intermediate in sialic acid metabolism. Thus, the mechanisms that control intracellular ManNAc levels are important regulators of sialic acid production. In prokaryotic organisms, UDP-N-acetylglucosamine (GlcNAc) 2-epimerase and GlcNAc-6-P 2-epimerase are two enzymes capable of generating ManNAc from UDP-GlcNAc and GlcNAc-6-P, respectively. We have purified for the first time native GlcNAc-6-P 2-epimerase from bacterial source to apparent homogeneity (1 200 fold) using Butyl-agarose, DEAE-FPLC and Mannose-6-P-agarose chromatography. By SDS/PAGE the pure enzyme showed a molecular mass of 38.4 +/- 0.2 kDa. The maximum activity was achieved at pH 7.8 and 37 degrees C. Under these conditions, the K(m) calculated for GlcNAc-6-P was 1.5 mM. The 2-epimerase activity was activated by Na(+) and inhibited by mannose-6-P but not mannose-1-P. Genetic analysis revealed high homology with bacterial isomerases. GlcNAc-6-P 2-epimerase from E. coli K92 is a ManNAc-inducible protein and is detected from the early logarithmic phase of growth. Our results indicate that, unlike UDP-GlcNAc 2-epimerase, which promotes the biosynthesis of sialic acid, GlcNAc-6-P 2-epimerase plays a catabolic role. When E. coli grows using ManNAc as a carbon source, this enzyme converts the intracellular ManNAc-6-P generated into GlcNAc-6-P, diverting the metabolic flux of ManNAc to GlcNAc.  相似文献   

2.
Previous studies have indicated negligible levels of both sialylation and the precursor N-acetylneuraminic acid (Neu5Ac) in a number of insect cell lines grown in serum-free medium. The overexpression of the human sialic acid 9-phosphate synthase (SAS) in combination with N-acetylmannosamine (ManNAc) feeding has been shown to overcome this limitation. In this study we evaluated the potential bottlenecks in the sialic acid synthesis pathway in a Spodoptera frugiperda (Sf9) insect cell line and devised strategies to overcome them by overexpression of the enzymatic pathway enzymes combined with appropriate substrate feeding. Coexpression of SAS and UDP-GlcNAc 2-epimerase/ManNAc kinase, the bifunctional enzyme initiating sialic acid biosynthesis in mammals, resulted in Neu5Ac synthesis without use of any external media supplementation to demonstrate that Neu5Ac could be generated intracellularly in Sf9 cells using natural metabolic precursors. N-Acetylglucosamine (GlcNAc) feeding in combination with this coexpression resulted in much higher levels of Neu5Ac compared to levels obtained with ManNAc feeding with SAS expression alone. The lower Neu5Ac levels obtained with ManNAc feeding suggested limitations in the transport and phosphorylation of ManNAc. The bottleneck in phosphorylation was likely due to utilization of GlcNAc kinase for phosphorylation of ManNAc in insect cells and was overcome by expression of ManNAc kinase. The transport limitation was addressed by the addition of tetra-O-acetylated ManNAc, which is easily taken up by the cells. An alternative sialic acid, 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN), could also be generated in insect cells, suggesting the potential for controlling not only the production of sialic acids but also the type of sialic acid generated. The levels of KDN could be increased with virtually no Neu5Ac generation when Sf9 cells were fed excess GlcNAc. The results of these studies may be used to enhance the sialylation of target glycoproteins in insect and other eukaryotic expression systems.  相似文献   

3.
4.
A variety of pathogens or commensals use at least one of four distinct mechanisms for decorating their surfaces with sialic acid as a strategy to avoid, subvert or inhibit host innate immunity. The metabolism of sialic acid thus is central to a range of host-pathogen interactions. The first committed step in this process, the production of free N-acetylmannosamine (ManNAc), has not been defined. Here we show that ManNAc-6-phosphate (ManNAc-6-P) is not an obligate sialate precursor in Escherichia coli K1. This conclusion was supported by 31P NMR spectroscopy of E. coli K1 derivatives engineered with different combinations of mutations in nanA (sialate aldolase or lyase), nanK (ManNAc kinase), nanE (ManNAc-6-P 2-epimerase), neuS (polysialyltransferase) and neuB (sialate synthase). The product specificities for purified NanK and NanE were determined by chromatographic analyses. Direct biochemical analysis showed that ManNAc-6-P was stable in a nanE mutant extract. The combined results indicate that neither ManNAc-6-P nor specific or non-specific phosphatase are necessary to generate the requisite ManNAc for sialate biosynthesis. Our results imply that the neuC gene product encodes an UDP-N-acetylglucosamine 2-epimerase that generates ManNAc directly from the dinucleotide-sugar precursor despite detection of only this enzyme's UDP-GlcNAc hydrolase activity. This study describes the first use of NMR for analysing intermediate flux within the sialate biosynthetic pathway.  相似文献   

5.
Previous studies have reported that insect cell lines lack the capacity to generate endogenously the nucleotide sugar, CMP-Neu5Ac, required for sialylation of glycoconjugates. In this study, the biosynthesis of this activated form of sialic acid completely from endogenous metabolites is demonstrated for the first time in insect cells by expressing the mammalian genes required for the multistep conversion of endogenous UDP-GlcNAc to CMP-Neu5Ac. The genes for UDP-GlcNAc-2-epimerase/ManNAc kinase (EK), sialic acid 9-phosphate synthase (SAS), and CMP-sialic acid synthetase (CSAS) were coexpressed in insect cells using baculovirus expression vectors, but the CMP-Neu5Ac and precursor Neu5Ac levels synthesized were found to be lower than those achieved with ManNAc supplementation due to feedback inhibition of the EK enzyme by CMP-Neu5Ac. When sialuria-like mutant EK genes, in which the site for feedback regulation has been mutated, were used, CMP-Neu5Ac was synthesized at levels more than 4 times higher than that achieved with the wild-type EK and 2.5 times higher than that achieved with ManNAc feeding. Addition of N-acetylglucosamine (GlcNAc), a precursor for UDP-GlcNAc, to the media increased the levels of CMP-Neu5Ac even more to a level 7.5 times higher than that achieved with ManNAc supplementation, creating a bottleneck in the conversion of Neu5Ac to CMP-Neu5Ac at higher levels of UDP-GlcNAc. The present study provides a useful biochemical strategy to synthesize and enhance the levels of the sialylation donor molecule, CMP-Neu5Ac, a critical limiting substrate for the generation of complex glycoproteins in insect cells and other cell culture systems.  相似文献   

6.
A new procedure for quantitating the amount of N-acetyl-D-mannosamine (ManNAc) or ManNAc-6-phosphate produced by 2'-epimerase activities involved in sialic acid metabolism has been developed. The ManNAc generated by the action of N-acetyl-D-glucosamine (GlcNAc) and UDP-GlcNAc 2'-epimerases is condensed with pyruvate through the action of N-acetylneuraminate lyase and the sialic acid released is measured by the thiobarbituric acid assay. For the analysis of prokaryotic GlcNAc-6-phosphate 2'-epimerase, ManNAc-6-phosphate can also be evaluated by this coupled assay after dephosphorylation of the sugar phosphate. This system provides a sensitive, rapid, reproducible, specific and simple procedure (feasible with commercial reagents) for measuring amino sugar 2'-epimerases from eukaryotic and prokaryotic sources. The technique reported here permitted us to detect UDP-GlcNAc 2'-epimerase and GlcNAc 2'-epimerase in mammalian cell extracts and GlcNAc-6-phosphate 2'-epimerase in bacterial extracts.  相似文献   

7.
Distal myopathy with rimmed vacuoles is an autosomal recessive muscle disease with preferential involvement of the tibialis anterior that spares the quadriceps muscles in young adulthood. In a Japanese patient with distal myopathy with rimmed vacuoles, we identified pathogenic mutations in the gene encoding the bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase, which catalyzes the initial two steps in the biosynthesis of sialic acid. In this study, we demonstrated the relationship between the genetic mutations and enzymatic activities using an in vitro expression assay system. Furthermore, we also showed that the levels of sialic acid in muscle and primary cultured cells from DMRV patients were reduced to 60-75% of control. The reactivities to lectins were also variable in some myofibers, suggesting that hyposialylation and abnormal glycosylation in muscles may contribute to the focal accumulations of autophagic vacuoles, amyloid deposits, or both in patient muscle tissue. The addition of ManNAc and NeuAc to primary cultured cells normalized sialylation levels, thus demonstrating the therapeutic potential of these compounds for this disease.  相似文献   

8.
Bacterial UDP-N-acetylglucosamine 2-epimerase catalyzes the reversible epimerization at C-2 of UDP-N-acetylglucosamine (UDP-GlcNAc) and thereby provides bacteria with UDP-N-acetylmannosamine (UDP-ManNAc), the activated donor of ManNAc residues. ManNAc is critical for several processes in bacteria, including formation of the antiphagocytic capsular polysaccharide of pathogens such as Streptococcus pneumoniae types 19F and 19A. We have determined the X-ray structure (2.5 A) of UDP-GlcNAc 2-epimerase with bound UDP and identified a previously unsuspected structural homology with the enzymes glycogen phosphorylase and T4 phage beta-glucosyltransferase. The relationship to these phosphoglycosyl transferases is very intriguing in terms of possible similarities in the catalytic mechanisms. Specifically, this observation is consistent with the proposal that the UDP-GlcNAc 2-epimerase-catalyzed elimination and re-addition of UDP to the glycal intermediate may proceed through a transition state with significant oxocarbenium ion-like character. The homodimeric epimerase is composed of two similar alpha/beta/alpha sandwich domains with the active site located in the deep cleft at the domain interface. Comparison of the multiple copies in the asymmetric unit has revealed that the epimerase can undergo a 10 degrees interdomain rotation that is implicated in the regulatory mechanism. A structure-based sequence alignment has identified several basic residues in the active site that may be involved in the proton transfer at C-2 or stabilization of the proposed oxocarbenium ion-like transition state. This insight into the structure of the bacterial epimerase is applicable to the homologous N-terminal domain of the bifunctional mammalian UDP-GlcNAc "hydrolyzing" 2-epimerase/ManNAc kinase that catalyzes the rate-determining step in the sialic acid biosynthetic pathway.  相似文献   

9.
Lec3 Chinese hamster ovary (CHO) cell glycosylation mutants have a defect in sialic acid biosynthesis that is shown here to be reflected most sensitively in reduced polysialic acid (PSA) on neural cell adhesion molecules. To identify the genetic origin of the phenotype, genes encoding different factors required for sialic acid biosynthesis were transfected into Lec3 cells. Only a Gne cDNA encoding UDP-GlcNAc 2-epimerase:ManNAc kinase rescued PSA synthesis. In an in vitro UDP-GlcNAc 2-epimerase assay, Lec3 cells had no detectable UDP-GlcNAc 2-epimerase activity, and Lec3 cells grown in serum-free medium were essentially devoid of sialic acid on glycoproteins. The Lec3 phenotype was rescued by exogenously added N-acetylmannosamine or mannosamine but not by the same concentrations of N-acetylglucosamine, glucosamine, glucose, or mannose. Sequencing of CHO Gne cDNAs identified a nonsense (E35stop) and a missense (G135E) mutation, respectively, in two independent Lec3 mutants. The G135E Lec3 mutant transfected with a rat Gne cDNA had restored in vitro UDP-GlcNAc 2-epimerase activity and cell surface PSA expression. Both Lec3 mutants were similarly rescued with a CHO Gne cDNA and with CHO Gne encoding the known kinase-deficient D413K mutation. However, cDNAs encoding the known epimerase-deficient mutation H132A or the new Lec3 G135E Gne mutation did not rescue the Lec3 phenotype. The G135E Gne missense mutation is a novel mechanism for inactivating UDP-GlcNAc 2-epimerase activity. Lec3 mutants with no UDP-GlcNAc 2-epimerase activity represent sensitive hosts for characterizing disease-causing mutations in the human GNE gene that give rise to sialuria, hereditary inclusion body myopathy, and Nonaka myopathy.  相似文献   

10.
N-Acetylmannosamine (ManNAc) is the physiological precursors to all sialic acids that occur in nature. As variations in the sialic acid decoration of cell surfaces can profoundly affect cell-cell, pathogen-cell, or drug-cell interactions, the enzymes that convert ManNAc into sialic acid are attractive targets for the development of drugs that specifically interrupt sialic acid biosynthesis or lead to modified sialic acids on the surface of cells. The first step in the enzymatic conversion of ManNAc into sialic acid is phosphorylation, yielding N-acetylmannosamine-6-phosphate. The enzyme that catalyzes this conversion is the N-acetylmannosamine kinase (ManNAc kinase) as part of the bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Here, we employed saturation transfer difference (STD) NMR experiments to study the binding of ManNAc and related ligands to the ManNAc kinase. It is shown that the configuration of C1 and C4 of ManNAc is crucial for binding to the enzyme, whereas the C2 position not only accepts variations in the attached N-acyl side chain but also tolerates inversion of configuration. Our experiments also show that ManNAc kinase maintains its functionality, even in the absence of Mg(2+). From the analysis of the STD NMR-derived binding epitopes, it is concluded that the binding mode of the N-acylmannosamines critically depends on the N-acyl side chain. In conjunction with the relative binding affinities of the ligands obtained from STD NMR titrations, it is possible to derive a structure-binding affinity relationship. This provides a cornerstone for the rational design of drugs for novel therapeutic applications by altering the sialic acid decorations of cell walls.  相似文献   

11.
12.
UDP-GlcNAc 2-epimerase/ManNAc kinase is the key enzyme of sialic acid biosynthesis in mammals. Its functional expression is a prerequisite for early embryogenesis and for the synthesis of several cell recognition motifs in adult organism. This bifunctional enzyme is involved in the development of different diseases like sialuria or hereditary inclusion body myopathy. For a detailed understanding of the enzyme, large amounts of the pure active protein are needed. Different heterologous cell systems were therefore analyzed for the enzyme, which was found to be functionally expressed in Escherichia coli, the yeast strains Saccharomyces cerevisiae and Pichia pastoris, and insect cells. In all these cell types, the expressed enzyme displayed both epimerase and kinase activities. In E. coli, up to 2mg protein/l cell culture was expressed, in yeast cells only 0.4mg/L, while up to 100mg/L, were detected in insect cells. In all three cell systems, insoluble protein aggregates were also observed. Purification from E. coli resulted in 100microg/L pure and structurally intact protein. For insect cells, purification methods were established which resulted in up to 50mg/L pure, soluble, and active protein. In summary, expression and purification of the UDP-GlcNAc 2-epimerase/ManNAc kinase in Sf-900 cells can yield the milligram amounts of protein required for structural characterization of the enzyme. However, the easier expression in E. coli and yeast provides sufficient quantities for enzymatic and kinetic characterization.  相似文献   

13.
We have established an efficient method for enzymatic production of cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuAc) from inexpensive materials, N-acetylglucosamine (GlcNAc) and cytidine 5'-monophosphate (CMP). The Haemophilus influenzae nanE gene encoding GlcNAc 6-phosphate (GlcNAc 6-P) 2-epimerase and the Campylobacter jejuni neuB1 gene encoding N-acetylneuraminic acid (NeuAc) synthetase, both of whose products are involved in NeuAc biosynthesis, were cloned and co-expressed in Escherichia coli cells. We examined the synthesis of NeuAc from GlcNAc via GlcNAc 6-P, N-acetylmannosamine (ManNAc) 6-P, and ManNAc by the use of E. coli cells producing GlcNAc 6-P 2-epimerase and NeuAc synthetase, in expectation of biological functions of E. coli such as the supply of phosphoenolpyruvate (PEP), which is an essential substrate for NeuAc synthetase, GlcNAc phospholylation by the PEP-dependent phosphotransferase system, and dephospholylation of ManNAc 6-P. Eleven mM NeuAc was synthesized from 50 mM GlcNAc by recombinant E. coli cells with the addition of glucose as an energy source. Next we attempted to synthesize CMP-NeuAc from GlcNAc and CMP using yeast cells, recombinant E. coli cells, and H. influenzae CMP-NeuAc synthetase, and succeeded in efficient production of CMP-NeuAc due to a sufficient supply of PEP and efficient conversion of CMP to cytidine 5'-triphosphate by yeast cells.  相似文献   

14.
Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) beyond controlling flux into the sialic acid biosynthetic pathway by converting UDP-GlcNAc to N-acetylmannosamine are described in this report. Overexpression of recombinant GNE in human embryonic kidney (HEK AD293) cells led to an increase in mRNA levels for ST3Gal5 (GM3 synthase) and ST8Sia1 (GD3 synthase) as well as the biosynthetic products of these sialyltransferases, the GM3 and GD3 gangliosides. Conversely, down-regulation of GNE by RNA interference methods had the opposite, but consistent, effect of lowering ST3Gal5 and ST8Sia1 mRNAs and reducing GM3 and GD3 levels. Control experiments ensured that GNE-mediated changes in sialyltransferase expression and ganglioside biosynthesis were not the result of altered flux through the sialic acid pathway. Interestingly, exogenous GM3 and GD3 also changed the expression of GNE and led to reduced ST3Gal5 and ST8Sia1 mRNA levels, demonstrating a reciprocating feedback mechanism where gangliosides regulate upstream biosynthetic enzymes. Cellular responses to the GNE-mediated changes in ST3Gal5 and ST8Sia1 expression and GM3 and GD3 levels were investigated next. Conditions that led to reduced ganglioside production (e.g. short hairpin RNA exposure) stimulated proliferation, whereas conditions that resulted in increased ganglioside levels (e.g. recombinant GNE and exogenous gangliosides) led to reduced proliferation with a concomitant increase in apoptosis. Finally, changes to BiP expression and ERK1/2 phosphorylation consistent with apoptosis and proliferation, respectively, were observed. These results provide examples of specific biochemical pathways, other than sialic acid metabolism, that are influenced by GNE.  相似文献   

15.
Murkin AS  Chou WK  Wakarchuk WW  Tanner ME 《Biochemistry》2004,43(44):14290-14298
This paper reports the first identification of a fully functional hydrolyzing UDP-N-acetylglucosamine 2-epimerase from a bacterial source. The epimerase (known as SiaA or NeuC) from Neisseria meningitidis MC58 group B is shown to catalyze the conversion of UDP-GlcNAc into ManNAc and UDP in the first step of sialic acid (N-acetylneuraminic acid) biosynthesis. The mechanism is proposed to involve an anti elimination of UDP to form 2-acetamidoglucal as an intermediate, followed by the syn addition of water. The observation that the alpha-anomer of ManNAc is the true product and that solvent deuterium is incorporated at C-2 is consistent with this mechanism. The use of the (18)O-labeled substrate confirms that the overall hydrolysis reaction proceeds via cleavage of the C-O bond. Furthermore, the putative intermediate 2-acetamidoglucal is shown to serve as a catalytically competent substrate and is enzymatically hydrated to give ManNAc exclusively. Isotope effect studies show that cleavage of the C-H bond is not rate limiting during catalysis. Mutagenesis studies show that three active site carboxylate residues are crucial for catalysis. In two of the mutants that were studied (E122Q and D131N), 2-acetamidoglucal was released from the active site during catalysis, providing direct evidence that the enzyme is capable of catalyzing the anti elimination of UDP from UDP-GlcNAc.  相似文献   

16.
The supplementation of the sialic acid biosynthetic pathway with exogenously supplied N-acetylmannosamine (ManNAc) analogs has many potential biomedical and biotechnological applications. In this work, we explore the structure-activity relationship of Man-NAc analogs on cell viability and metabolic flux into the sialic acid biosynthetic pathway to gain a better understanding of the fundamental biology underlying "glycosylation engineering" technology. A panel of ManNAc analogs bearing various modifications on the hydroxyl groups as well as substitutions at the N-acyl position was investigated. Increasing the carbon chain length of ester derivatives attached to the hydroxyl groups increased the metabolic efficiency of sialic acid production, whereas similar modification to the N-acyl group decreased efficiency. In both cases, increases in chain length decreased cell viability; DNA ladder formation, Annexin V-FITC two-dimensional flow cytometry assays, caspase-3 activation, and down-regulation of sialoglycoconjugate-processing enzymes established that the observed growth inhibition and toxicity resulted from apoptosis. Two of the panel of 12 analogs tested, specifically Ac(4)ManNLev and Ac(4) ManNHomoLev, were highly toxic. Interestingly, both of these analogs maintained a ketone functionality in the same position relative to the core monosaccharide structure, and both also inhibited flux through the sialic acid pathway (the remainder of the less toxic analogs either increased or had no measurable impact on flux). These results provide fundamental insights into the role of sialic acid metabolism in apoptosis by demonstrating that ManNAc analogs can modulate apoptosis both indirectly via hydroxylgroup effects and directly through N-acyl-group effects.  相似文献   

17.
"Sialic acid engineering" refers to the strategy where cell surface carbohydrates are modified by the biosynthetic incorporation of metabolic intermediates, such as non-natural N-acetylmannosamine (ManNAc) analogues, into cellular glycoconjugates. While this technology has promising research, biomedical, and biotechnological applications due to its ability to endow the cell surface with novel physical and chemical properties, its adoption on a large scale is hindered by the inefficient metabolic utilization of ManNAc analogues. We address this limitation by proposing the use of acetylated ManNAc analogues for sialic acid engineering applications. In this paper, the metabolic flux of these "second-generation" compounds into a cell, and, subsequently, into the target sialic acid biosynthetic pathway is characterized in detail. We show that acetylated ManNAc analogues are metabolized up to 900-fold more efficiently than their natural counterparts. The acetylated compounds, however, decrease cell viability under certain culture conditions. To determine if these toxic side effects can be avoided, we developed an assay to measure the cellular uptake of acetylated ManNAc from the culture medium and its subsequent flux into sialic acid biosynthetic pathway. This assay shows that the majority ( > 80%) of acetylated ManNAc is stored in a cellular "reservoir" capable of safely sequestering this analogue. These results provide conditions that, from a practical perspective, enable the acetylated analogues to be used safely and efficaciously and therefore offer a general strategy to facilitate metabolic substrate-based carbohydrate engineering efforts. In addition, these results provide fundamental new insights into the metabolic processing of non-natural monosaccharides.  相似文献   

18.
UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (UDP-GlcNAc 2-epimerase) is the key enzyme in the de novo synthesis pathway of neuraminic acid, which is widely expressed as a terminal carbohydrate residue on glycoconjugates. UDP-GlcNAc 2-epimerase is a bifunctional enzyme and catalyzes the first two steps of neuraminic acid synthesis in the cytosol, the conversion of UDP-N-acetylglucosamine to ManAc and the phosphorylation to ManAc-6-phosphate. So far, regulation of this essential enzyme by posttranslational modification has not been shown. Since UDP-N-acetylglucosamine is a cytosolic protein containing eight conserved motifs for protein kinase C (PKC), we investigated whether its enzymatic activity might be regulated by phosphorylation by PKC. We showed that UDP-GlcNAc 2-epimerase interacts with several isoforms of PKC in mouse liver and is phosphorylated in vivo. Furthermore, PKC phosphorylates UDP-GlcNAc 2-epimerase and this phosphorylation results in an upregulation of the UDP-GlcNAc 2-epimerase enzyme activity.  相似文献   

19.
Sialic acids are essential components of membrane glycoconjugates. They are responsible for the interaction, structure, and functionality of all deuterostome cells and have major functions in cellular processes in health and diseases. The key enzyme of the biosynthesis of sialic acid is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase that transforms UDP-N-acetylglucosamine to N-acetylmannosamine (ManNAc) followed by its phosphorylation to ManNAc 6-phosphate and has a direct impact on the sialylation of cell surface components. Here, we present the crystal structures of the human N-acetylmannosamine kinase (MNK) domain of UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase in complexes with ManNAc at 1.64 Å resolution, MNK·ManNAc·ADP (1.82 Å) and MNK·ManNAc 6-phosphate·ADP (2.10 Å). Our findings offer detailed insights in the active center of MNK and serve as a structural basis to design inhibitors. We synthesized a novel inhibitor, 6-O-acetyl-ManNAc, which is more potent than those previously tested. Specific inhibitors of sialic acid biosynthesis may serve to further study biological functions of sialic acid.  相似文献   

20.
BackgroundSialylation of glycoproteins and glycolipids is important for biological processes such as cellular communication, cell migration and protein function. Biosynthesis of CMP-sialic acid, the essential substrate, comprises five enzymatic steps, involving ManNAc and sialic acid and their phosphorylated forms as intermediates. Genetic diseases in this pathway result in different and tissue-restricted phenotypes, which is poorly understood.Methods and resultsWe aimed to study the mechanisms of sialic acid metabolism in knockouts (KO) of the sialic acid pathway in two independent cell lines. Sialylation of cell surface glycans was reduced by KO of GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase), NANS (sialic acid synthase) and CMAS (N-acylneuraminate cytidylyltransferase) genes, but was largely unaffected in NANP (N-acylneuraminate-9-phosphatase) KO, as studied by MAA and PNA lectin binding. NANP is the third enzyme in sialic acid biosynthesis and dephosphorylates sialic acid 9-phosphate to free sialic acid. LC-MS analysis of sialic acid metabolites showed that CMP-sialic acid was dramatically reduced in GNE and NANS KO cells and undetectable in CMAS KO. In agreement with normal cell surface sialylation, CMP-sialic acid levels in NANP KO were comparable to WT cells, even though sialic acid 9-phosphate, the substrate of NANP accumulated. Metabolic flux analysis with 13C6-labelled ManNAc showed a lower, but significant conversion of ManNAc into sialic acid.ConclusionsOur data provide evidence that NANP activity is not essential for de novo sialic acid production and point towards an alternative phosphatase activity, bypassing NANP.General significanceThis report contributes to a better understanding of sialic acid biosynthesis in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号