首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by glutaryl-CoA dehydrogenase deficiency, which leads to accumulation in body fluids and in brain of predominantly glutaric acid (GA), and to a lesser extent of 3-hydroxyglutaric and glutaconic acids. Neurological presentation is common in patients with GA I. Although the mechanisms underlying brain damage in this disorder are not yet well established, there is growing evidence that excitotoxicity may play a central role in the neuropathogenesis of this disease. In the present study, preparations of synaptosomes, synaptic plasma membranes and synaptic vesicles, as well as cultured astrocytes from rat forebrain were exposed to various concentrations of GA for the determination of the basal and potassium-induced release of [(3)H]glutamate by synaptosomes, Na(+)-independent glutamate binding to synaptic membranes and vesicular glutamate uptake and Na(+)-dependent glutamate uptake into astrocytes, respectively. GA (1-100 nM) significantly stimulated [(3)H]glutamate binding to brain plasma membranes (40-70%) in the absence of extracellular Na(+) concentrations, reflecting glutamate binding to receptors. Furthermore, this stimulatory effect was totally abolished by the metabotropic glutamate ligands DHPG, DCG-IV and l-AP4, attenuated by the ionotropic non-NMDA glutamate receptor agonist AMPA and had no interference of the NMDA receptor antagonist MK-801. Moreover, [(3)H]glutamate uptake into synaptic vesicles was inhibited by approximately 50% by 10 and 100 nM GA and Na(+)-dependent [(3)H]glutamate uptake by astrocytes was significantly increased (up to 50%) in a dose-dependent manner (maximal stimulation at 100 microM GA). In contrast, synaptosomal glutamate release was not affected by the acid at concentrations as high as 1 mM. These results indicate that the inhibition of glutamate uptake into synaptic vesicles by low concentrations GA may result in elevated concentrations of the excitatory neurotransmitter in the cytosol and the stimulatory effect of this organic acid on glutamate binding may potentially cause excitotoxicity to neural cells. Finally, taken together these results and previous findings showing that GA markedly decreases synaptosomal glutamate uptake, it is possible that the stimulatory effect of GA on astrocyte glutamate uptake might indicate that astrocytes may protect neurons from excitotoxic damage caused by GA by increasing glutamate uptake and therefore reducing the concentration of this excitatory neurotransmitter in the synaptic cleft.  相似文献   

2.
Evidence for a G protein-coupled gamma-hydroxybutyric acid receptor   总被引:1,自引:0,他引:1  
gamma-Hydroxybutyric acid (GHB) is a naturally occurring metabolite of GABA that has been postulated to exert ubiquitous neuropharmacological effects through GABA(B) receptor (GABA(B)R)-mediated mechanisms. The alternative hypothesis that GHB acts via a GHB-specific, G protein-coupled presynaptic receptor that is different from the GABA(B)R was tested. The effect of GHB on regional and subcellular brain adenylyl cyclase in adult and developing rats was determined and compared with that of the GABA(B)R agonist (-)-baclofen. Also, using guanosine 5'-O:-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding and low-K:(m) GTPase activity as markers the effects of GHB and (-)-baclofen on G protein activity in the brain were determined. Neither GHB nor baclofen had an effect on basal cyclic AMP (cAMP) levels. GHB significantly decreased forskolin-stimulated cAMP levels by 40-50% in cortex and hippocampus but not thalamus or cerebellum, whereas (-)-baclofen had an effect throughout the brain. The effect of GHB on adenylyl cyclase was observed in presynaptic and not postsynaptic subcellular tissue preparations, but the effect of baclofen was observed in both subcellular preparations. The GHB-induced alteration in forskolin-induced cAMP formation was blocked by a specific GHB antagonist but not a specific GABA(B)R antagonist. The (-)-baclofen-induced alteration in forskolin-induced cAMP formation was blocked by a specific GABA(B)R antagonist but not a specific GHB antagonist. The negative coupling of GHB to adenylyl cyclase appeared at postnatal day 21, a developmental time point that is concordant with the developmental appearance of [(3)H]GHB binding in cerebral cortex, but the effects of (-)-baclofen were present by postnatal day 14. GHB and baclofen both stimulated [(35)S]GTPgammaS binding and low-K:(m) GTPase activity by 40-50%. The GHB-induced effect was blocked by GHB antagonists but not by GABA(B)R antagonists and was seen only in cortex and hippocampus. The (-)-baclofen-induced effect was blocked by GABA(B)R antagonists but not by GHB antagonists and was observed throughout the brain. These data support the hypothesis that GHB induces a G protein-mediated decrease in adenylyl cyclase via a GHB-specific G protein-coupled presynaptic receptor that is different from the GABA(B)R.  相似文献   

3.
Conversion of γ-Hydroxybutyrate to γ-Aminobutyrate In Vitro   总被引:3,自引:3,他引:0  
[3H]gamma-Hydroxybutyric acid [( 3H]GHB) at physiological concentration incubated with brain slices in Krebs-Ringer medium produced [3H]gamma-aminobutyric acid [( 3H]GABA). This compound was identified by its Rf values on thin-layer chromatograms and by analysis of the dansyl derivatives of the free amino acid fraction. No labelled glutamate could be detected. Brain slices incubated with labelled glutamate and nonradioactive GHB generated labelled 2-oxoglutarate, suggesting that gamma-aminobutyrate-2-oxoglutarate transaminase (GABA-T) is involved in catalyzing this reaction. Furthermore, specific inhibitors of GABA-T blocked the production of labelled GABA from labelled GHB and of labelled 2-oxoglutarate from labelled glutamate. Transformation of [3H]GHB into [3H]GABA was not inhibited by malonate, demonstrating that the succinate-linked pathway is not involved in the generation of GABA. The kinetic characteristics of the multienzyme system involved in GHB degradation studied in vitro are compatible with the production of GABA in vivo.  相似文献   

4.
The gamma-aminobutyric acid type A receptor (GABA(A)R) carries both high (K(D) = 10-30 nm) and low (K(D) = 0.1-1.0 microm) affinity binding sites for agonists. We have used site-directed mutagenesis to identify a specific residue in the rat beta2 subunit that is involved in high affinity agonist binding. Tyrosine residues at positions 62 and 74 were mutated to either phenylalanine or serine and the effects on ligand binding and ion channel activation were investigated after the expression of mutant subunits with wild-type alpha1 and gamma2 subunits in tsA201 cells or in Xenopus oocytes. None of the mutations affected [(3)H]Ro15-4513 binding or impaired allosteric interactions between the low affinity GABA and benzodiazepine sites. Although mutations at position 74 had little effect on [(3)H]muscimol binding, the Y62F mutation decreased the affinity of the high affinity [(3)H]muscimol binding sites by approximately 6-fold, and the Y62S mutation led to a loss of detectable high affinity binding sites. After expression in oocytes, the EC(50) values for both muscimol and GABA-induced activation of Y62F and Y62S receptors were increased by 2- and 6-fold compared with the wild-type. We conclude that Tyr-62 of the beta subunit is an important determinant for high affinity agonist binding to the GABA(A) receptor.  相似文献   

5.
Nodulisporic acid (NA) is an indole diterpene fungal product with insecticidal activity. NA activates a glutamate-gated chloride channel (GluCl) in grasshopper neurons and potentiates channel opening by glutamate. The endectocide ivermectin (IVM) induces a similar, but larger current than NA. Using Drosophila melanogaster head membranes, a high affinity binding site for NA was identified. Equilibrium binding studies show that an amide analogue, N-(2-hydroxyethyl-2,2-(3)H)nodulisporamide ([(3)H]NAmide), binds to a single population of sites in head membranes with a K(D) of 12 pM and a B(max) of 1.4 pmol/mg of protein. A similar K(D) is determined from the kinetics of ligand binding and dissociation. Four lines of evidence indicate that the binding site is a GluCl. First, NA potentiates opening of a glutamate-gated chloride current in grasshopper neurons. Second, glutamate inhibits the binding of [(3)H]NAmide by increasing the rate of dissociation 3-fold. Third, IVM potently inhibits the binding of [(3)H]NAmide and IVM binds to GluCls. Finally, the binding of [(3)H]IVM is inhibited by NA. The B(max) of [(3)H]IVM is twice that of [(3)H]NAmide, and about half of the [(3)H]IVM binding sites are inhibited by NA with high affinity (K(I) = 25 pM). In contrast, [(3)H]IVM binding to Caenorhabditis elegans membranes is not inhibited by NA at 100 nM, and there are no high affinity binding sites for NA on these membranes. Thus, half of the Drosophila IVM receptors and all of the NA receptors are associated with GluCl. NA distinguishes between nematode and insect GluCls and identifies subpopulations of IVM binding sites.  相似文献   

6.
Neurological symptoms are common in patients with glutaric acidemia type I (GA-I). Although the pathophysiology of this disorder is not yet fully established, 3-hydroxyglutaric acid (3-HGA), which accumulates in affected patients, has recently been demonstrated to be excitotoxic to embryonic chick and neonatal rat neurons probably via NMDA glutamate receptors. In the present study, we investigated the in vitro effects of 3-HGA on the [(3)H]glutamate and [(3)H]MK-801 (dizocilpine) binding to rat synaptic plasma membranes from cerebral cortex of young rats in order to elucidate the interactions of 3-HGA with glutamate receptors and its possible contribution to the in vitro excitotoxic properties of 3-HGA. 3-HGA (10-100 microM) significantly decreased Na(+)-dependent (up to 62%) and Na(+)-independent (up to 30%) [(3)H]glutamate binding to synaptic membranes, reflecting a possible competition between glutamate and 3-HGA for the glutamate transporter and receptor sites, respectively. Since a decrease in Na(+)-independent glutamate binding might represent an interaction of 3-HGA with glutamate receptors, we next investigated whether 3-HGA interacts with NMDA receptors by adding NMDA alone or combined with 3-HGA and measuring Na(+)-independent [(3)H]glutamate binding to synaptic membranes (binding to receptors). We verified that 3-HGA and NMDA, at 10 and 100 microM concentrations, decreased glutamate binding by up to 20 and 45%, respectively, and that the simultaneous addition of both substances did not provoke an additive effect, implying that they bind to NMDA receptors at the same site. Furthermore, the binding of the NMDA-channel blocker [(3)H ]MK-801 was significantly increased (approximately 32-40%) by 10 and 100 microM 3-HGA, implying that 3-HGA was able to open the NMDA channel allowing MK-801 binding, which is a characteristic of NMDA agonists. On the other hand, glutamate had a much higher stimulatory effect on this binding (180% increase), reflecting its strong NMDA agonist property. Furthermore, the simultaneous addition of 3-HGA and glutamate provoked an additive stimulatory effect on [(3)H]MK-801 binding to the NMDA receptor. These data indicate that, relatively to glutamate, 3-HGA is a weak agonist of NMDA receptors. Finally, we demonstrated that 3-HGA provoked a significant increase of extracellular calcium uptake by cerebral cortex slices, strengthening therefore, the view that 3-HGA activates NMDA receptors. The present study therefore, demonstrates at the molecular level that 3-HGA modulates glutamatergic neurotransmission and may explain previous findings relating the neurotoxic actions of this organic acid with excitotoxicity.  相似文献   

7.
While studies with [(3)H]D-aspartate ([(3)H]d-Asp) illustrate specific interactions with excitatory amino acid transporters (EAATs), new insights into the pharmacological characteristics and localization of specific EAAT subtypes depend upon the availability of novel ligands. One such ligand is [(3)H]-(2S,4R)-4-methylglutamate ([(3)H]4MG) which labels astrocytic EAATs in homogenate binding studies. This study examined the utility of [(3)H]4MG for binding and autoradiography in coronal sections of rat brain. Binding of [(3)H]4MG was optimal in 5mM HEPES buffer containing 96 mM NaCl, pH 7.5. Specific binding of [(3)H]4MG exhibited two components, but was to a single site when glutamate receptor (GluR) sites were masked with kainate (KA; 1 microM): t(1/2) approximately 5 min, K(d) 250 nM and B(max) 5.4 pmol/mg protein. Pharmacological studies revealed that [(3)H]4MG, unlike [(3)H]d-Asp, labeled both EAAT and ionotropic GluR sites. Further studies employed 6-cyano-7-nitroquinoxaline (30 microM) to block GluR sites, but selective EAAT ligands displayed lower potency than expected for binding to transporters relative to drugs possessing mixed transporter/receptor activities. Autoradiography in conjunction with densitometry with [(3)H]4MG and [(3)H]d-Asp revealed wide, but discrete distributions in forebrain; significant differences in binding levels were found in hippocampus, nucleus accumbens and cortical sub-areas. Although EAAT1 and EAAT2 components were detectable using 3-methylglutamate and serine-O-sulphate, respectively, the majority of [(3)H]4MG binding was to KA-related sites. Overall, in tissue sections [(3)H]4MG proved unsuitable for studying the autoradiographic localization of EAATs apparently due to its inability to selectively discriminate Na(+)-dependent binding to Glu transporters.  相似文献   

8.
1. (3)H-labelled o-aminoazotoluene was synthesized from [G-(3)H]o-toluidine on a semi-micro scale. 2. An association of (3)H with DNA, RNA and protein from the liver, kidney and spleen of female C57b mice was demonstrated after the administration of a single dose of [(3)H]o-aminoazotoluene. 3. This association is judged to represent covalent binding as a result of experiments involving solvent extraction, examination of the acid hydrolysates of the DNA and RNA and administration of [(3)H]water with unlabelled o-aminoazotoluene. 4. Examination of the extents of binding at various times after the administration of a single dose of [(3)H]o-aminoazotoluene showed that there was a peak of binding to liver DNA in the female mice at about 16hr. that was not present in the male mice. 5. The extent of binding to DNA, RNA and protein at 16hr. in the female C57b mouse liver was greater than that in the spleen and kidney.  相似文献   

9.
Two gamma-hydroxybutyric acid (GHB) analogues, trans-gamma-hydroxycrotonic acid (t-HCA) and gamma-(p-methoxybenzyl)-gamma-hydroxybutyric acid (NCS-435) displaced [3H]GHB from GHB receptors with the same affinity as GHB but, unlike GHB, failed to displace [3H]baclofen from GABAB receptors. The effect of the GHB analogues, GHB and baclofen, on G protein activity and hippocampal extracellular glutamate levels was compared. While GHB and baclofen stimulated 5'-O-(3-[35S]thiotriphospate) [35S]GTPgammaS binding both in cortex homogenate and cortical slices, t-HCA and NCS-435 were ineffective up to 1 mm concentration. GHB and baclofen effect was suppressed by the GABAB antagonist CGP 35348 but not by the GHB receptor antagonist NCS-382. Perfused into rat hippocampus, 500 nm and 1 mm GHB increased and decreased extracellular glutamate levels, respectively. GHB stimulation was suppressed by NCS-382, while GHB inhibition by CGP 35348. t-HCA and NCS-435 (0.1-1000 microm) locally perfused into hippocampus increased extracellular glutamate; this effect was inhibited by NCS-382 (10 microm) but not by CGP 35348 (500 microm). The results indicate that GHB-induced G protein activation and reduction of glutamate levels are GABAB-mediated effects, while the increase of glutamate levels is a GHB-mediated effect. Neither t-HCA nor NCS-435 reproduced GHB sedative/hypnotic effect in mice, confirming that this effect is GABAB-mediated. The GHB analogues constitute important tools for understanding the physiological role of endogenous GHB and its receptor.  相似文献   

10.
Defects in Niemann-Pick, Type C-1 protein (NPC1) cause cholesterol, sphingolipids, phospholipids, and glycolipids to accumulate in lysosomes of liver, spleen, and brain. In cultured fibroblasts, NPC1 deficiency causes lysosomal retention of lipoprotein-derived cholesterol after uptake by receptor-mediated endocytosis. NPC1 contains 1278 amino acids that form 13 membrane-spanning helices and three large loops that project into the lumen of lysosomes. We showed earlier that NPC1 binds cholesterol and oxysterols. Here we localize the binding site to luminal loop-1, a 240-amino acid domain with 18 cysteines. When produced in cultured cells, luminal loop-1 was secreted as a soluble dimer. This loop bound [(3)H]cholesterol (K(d), 130 nM) and [(3)H]25-hydroxycholesterol (25-HC, K(d), 10 nM) with one sterol binding site per dimer. Binding of both sterols was competed by oxysterols (24-, 25-, and 27-HC). Unlabeled cholesterol competed strongly for binding of [(3)H]cholesterol, but weakly for [(3)H]25-HC binding. Binding of [(3)H]cholesterol but not [(3)H]25-HC was inhibited by detergents. We also studied NPC2, a soluble protein whose deficiency causes a similar disease phenotype. NPC2 bound cholesterol, but not oxysterols. Epicholesterol and cholesteryl sulfate competed for [(3)H]cholesterol binding to NPC2, but not NPC1. Glutamine 79 in luminal loop-1 of NPC-1 is important for sterol binding; a Q79A mutation abolished binding of [(3)H]cholesterol and [(3)H]25-HC to full-length NPC1. Nevertheless, the Q79A mutant restored cholesterol transport to NPC1-deficient Chinese hamster ovary cells. Thus, the sterol binding site on luminal loop-1 is not essential for NPC1 function in fibroblasts, but it may function in other cells where NPC1 deficiency produces more complicated lipid abnormalities.  相似文献   

11.
12.
Cucumber hypocotyls were extracted and the extract centrifuged at 100,000g to yield a supernatant or cytosol fraction. Binding of [(3)H]-gibberellin(4) (GA(4)) to soluble macromolecular components present in the cytosol was demonstrated at 0 C by Sephadex chromatography. Binding assays performed with cytosol that had been preheated or incubated with protease, DNase, RNase, or phospholipase A or C indicated that heat and protease treatments disrupted the binding, which suggests that binding occurred to a protein. Equilibrium dialysis of a protein-enriched fraction prepared by ammonium sulfate precipitation also indicated binding of [(3)H]GA(4) to macromolecular components. [(3)H]GA(4) binding was pH-sensitive, saturable, reversible, and significantly affected by biologically active gibberellins, but not by inactive gibberellins or other plant hormones such as indoleacetic acid, abscisic acid, or kinetin. Thin layer chromatography indicated that [(3)H]GA(4), and not a metabolite, was the species bound. A kinetic analysis indicated that specific binding of [(3)H]GA(4) was due to a single class of binding sites having an estimated K(d) of 10(-7) molar and a concentration of 0.8 x 10(-12) moles gram(-1) fresh weight or 0.4 x 10(-12) moles milligram(-1) soluble protein.  相似文献   

13.
Pretreatment of brain synaptic membrane homogenates with Triton X-100 resulted in a drastic disclosure of [3H] glutamate (Glu) binding activity which was sensitive to one of the central Glu receptor agonists, N-methyl-D-aspartic acid (NMDA). The NMDA-sensitive binding was inversely dependent on the incubation temperature, and was a reversible and saturable process. Scatchard analysis revealed that Triton X-100 treatment yielded in a significant enhancement of the affinity with a concomitant increment of the density of binding sites. Electrophysiologically identified agonists and antagonists for the NMDA receptors all significantly inhibited the binding to Triton-treated membranes. These results suggest that Triton-treatment may disclose NMDA-sensitive [3H] Glu binding sites in brain synaptic membranes.  相似文献   

14.
Identification of an opioid receptor subunit carrying the mu binding site   总被引:6,自引:0,他引:6  
E L Newman  E A Barnard 《Biochemistry》1984,23(23):5385-5389
The enkephalin affinity reagent [3H]Tyr-D-Ala-Gly-Phe-Leu-CH2Cl [( 3H]DALECK) was synthesized. It exhibited high-affinity reversible binding, at pH 7.4, to both mu and delta opioid receptor sites in rat brain membranes. At pH 8.1, nanomolar levels of [3H]DALECK produced an irreversible labeling in synaptic membranes, essentially only in one subunit of 58 000 daltons. The irreversible phase of the reaction reduced the subsequent binding of a mu-selective enkephalin derivative but not that of a delta-selective one. It is concluded that a mu subunit of the opioid receptor exists, can be alkylated specifically, and is of Mr 58 000.  相似文献   

15.
After short preincubations with N-[(3)H]methylscopolamine ([(3)H]NMS) or R(-)-[(3)H]quinuclidinyl benzilate ([(3)H]QNB), radioligand dissociation from muscarinic M(1) receptors in Chinese hamster ovary cell membranes was fast, monoexponential, and independent of the concentration of unlabeled NMS or QNB added to reveal dissociation. After long preincubations, the dissociation was slow, not monoexponential, and inversely related to the concentration of the unlabeled ligand. Apparently, the unlabeled ligand becomes able to associate with the receptor simultaneously with the already bound radioligand if the preincubation lasts for a long period, and to hinder radioligand dissociation. When the membranes were preincubated with [(3)H]NMS and then exposed to benzilylcholine mustard (covalently binding specific ligand), [(3)H]NMS dissociation was blocked in wild-type receptors, but not in mutated (D99N) M(1) receptors. Covalently binding [(3)H]propylbenzilylcholine mustard detected substantially more binding sites than [(3)H]NMS. The observations support a model in which the receptor binding domain has two tandemly arranged subsites for classical ligands, a peripheral one and a central one. Ligands bind to the peripheral subsite first (binding with lower affinity) and translocate to the central subsite (binding with higher affinity). The peripheral subsite of M(1) receptors may include Asp-99. Experimental data on [(3)H]NMS and [(3)H]QNB association and dissociation perfectly agree with the predictions of the tandem two-site model.  相似文献   

16.
The binding profile of [(3)H]BHDP ([(3)H]N-benzyl-N'-(2-hydroxy-3,4-dimethoxybenzyl)-piperazine) was evaluated. [(3)H]BHDP labelled a single class of binding sites with high affinity (K(d)=2-3 nM) in rat liver mitochondria and synaptic membranes. The pharmacological characterization of these sites using sigma reference compounds revealed that these sites are sigma receptors and, more particularly, sigma1 receptors. Indeed, BHDP inhibited [(3)H]pentazocine binding, a marker for sigma1 receptors, with high affinity in a competitive manner. BHDP is selective for sigma1 receptors since it did not show any relevant affinity for most of the other receptors, ion channels or transporters tested. Moreover, in an in vitro model of cellular hypoxia, BHDP prevented the fall in adenosine triphosphate (ATP) levels caused by 24 h hypoxia in cultured astrocytes. Taken together, these results demonstrate that [(3)H]BHDP is a potent and selective ligand for sigma1 receptors showing cytoprotective effects in astrocytes.  相似文献   

17.
Pyrimidine nucleotide-sensitive phosphoinositidase C activity (PLC), previously identified in frog semicircular canal ampulla, was pharmacologically characterized. Binding of [(3)H]UTP and abilities of unlabeled nucleotide analogs to inhibit binding and to stimulate PLC in myo-[(3)H]inositol-loaded ampullas were determined. Specific [(3)H]UTP binding was competitively inhibited by UTP [apparent dissociation binding constant = 0.8 microM; Hill coefficient = 0.7]. Scatchard analysis revealed a minor class of high-affinity binding sites [45 fmol UTP bound/microgram protein; dissociation constant (K(D1)) = 0.4 microM] and a major class of moderate-affinity binding sites (365 fmol UTP bound/microgram protein; K(D2) = 10 microM). The stereospecificity pattern for UTP analog recognition was UMP > UDP >/= ADP = UTP = dTTP > adenosine 5'-O-(3-thiotriphosphate) = ATP = CTP = 2'-and 3'-O-4-(benzoylbenzoyl)-ATP (Bz-ATP) >/= AMP >/= 2-methylthio-ATP = alpha,beta-methylene-ATP > uridine = diadenosine tetraphosphate (Ap(4)A); cAMP and adenosine were inactive. Antagonist recognition pattern was DIDS = pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) = reactive blue 2 > suramin. The rank order of potencies for agonist-induced PLC activation was UDP >/= UTP >/= Ap(4)A >/= UMP = Bz-ATP; uridine was inactive. UTP-stimulated PLC activity was inhibited by DIDS = reactive blue 2 = PPADS > suramin. These results suggest that the population of [(3)H]UTP-labeled binding sites is heterogeneous, with a low number of high-affinity UTP receptors whose function(s) need to be determined and a large number of moderate-affinity receptors triggering PLC activation.  相似文献   

18.
Benzodiazepine binding sites were studied in mitochondria of unicellular eukaryotes, the amoeba Acathamoeba castellanii and the yeast Saccharomyces cerevisiae, and also in rat liver mitochondria as a control. For that purpose we applied Ro5-4864, a well-known ligand of the mitochondrial benzodiazepine receptor (MBR) present in mammalian mitochondria. The levels of specific [(3)H]Ro5-4864 binding, the dissociation constant (K(D)) and the number of [(3)H]Ro5-4864 binding sites (B(max)) determined for fractions of the studied mitochondria indicate the presence of specific [(3)H]Ro5-4864 binding sites in the outer membrane of yeast and amoeba mitochondria as well as in yeast mitoplasts. Thus, A. castellanii and S. cerevisiae mitochondria, like rat liver mitochondria, contain proteins able to bind specifically [(3)H]Ro5-4864. Labeling of amoeba, yeast and rat liver mitochondria with [(3)H]Ro5-4864 revealed proteins identified as the voltage dependent anion selective channel (VDAC) in the outer membrane and adenine nucleotide translocase (ANT) in the inner membrane. Therefore, the specific MBR ligand binding is not confined only to mammalian mitochondria and is more widespread within the eukaryotic world. However, it can not be excluded that MBR ligand binding sites are exploited efficiently only by higher multicellular eukaryotes. Nevertheless, the MBR ligand binding sites in mitochondria of lower eukaryotes can be applied as useful models in studies on mammalian MBR.  相似文献   

19.
Disposition kinetics of [(3)H]palmitate and its low-molecular-weight metabolites in perfused rat livers were studied using the multiple-indicator dilution technique, a selective assay for [(3)H]palmitate and its low-molecular-weight metabolites, and several physiologically based pharmacokinetic models. The level of liver fatty acid binding protein (L-FABP), other intrahepatic binding proteins (microsomal protein, albumin, and glutathione S-transferase) and the outflow profiles of [(3)H]palmitate and metabolites were measured in four experimental groups of rats: 1) males; 2) clofibrate-treated males; 3) females; and 4) pregnant females. A slow-diffusion/bound model was found to better describe the hepatic disposition of unchanged [(3)H]palmitate than other pharmacokinetic models. The L-FABP levels followed the order: pregnant female > clofibrate-treated male > female > male. Levels of other intrahepatic proteins did not differ significantly. The hepatic extraction ratio and mean transit time for unchanged palmitate, as well as the production of low-molecular-weight metabolites of palmitate and their retention in the liver, increased with increasing L-FABP levels. Palmitate metabolic clearance, permeability-surface area product, retention of palmitate by the liver, and cytoplasmic diffusion constant for unchanged [(3)H]palmitate also increased with increasing L-FABP levels. It is concluded that the variability in hepatic pharmacokinetics of unchanged [(3)H]palmitate and its low-molecular-weight metabolites in perfused rat livers is related to levels of L-FABP and not those of other intrahepatic proteins.  相似文献   

20.
The effect of three compounds known to allosterically modulate binding to the GABA/benzodiazepine/picrotoxin receptor complex on 4-hydroxy-2,3 [3H]butyric acid (GHB) binding was investigated. Pentobarbital, pentylenetetrazole, and picrotoxin enhanced [3H]GHB binding in a dose dependent fashion. Pentobarbital enhanced 4-hydroxy-2,3 [3H]butyric acid binding was associated with an increase in Bmax while pentylenetetrazole and picrotoxin altered the affinity of GHB for its binding site producing a decrease in Kd. These findings suggest that the GHB and GABA receptor complex may share certain moieties in common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号