首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mathematic model for describing the Michaelis-Menten-type reaction kinetics with product competitive inhibition and side-reaction is proposed. A multiresponse nonlinear simulation program was employed to determine the coefficients of a four-parameter rate expression. The rate expression was compared with the conventional Michaelis-Menten reaction rate models with and without product inhibition. Experimental data were obtained using beta-galactosidase of Kluyveromyces lactis immobilized on cotton fabric in a batch system at a temperature of 37 degrees C and at various initial concentrations of dissolved lactose ranging from 3-12.5% (w/v). The reaction is followed by concentration changes with time in the tank. Samples were obtained after the outlet stream of the packed bed reactor is mixed in a well-stirred tank. High-performance liquid chromatography (HPLC) was applied to monitor the concentrations of all the sugars (reactants as well as products). The four-parameter rate model is featured with a term to describe the formation of trisaccharides, a side-reaction of the enzymatic hydrolysis. The proposed model simulates the process of lactose hydrolysis and the formation of glucose and galactose, giving better accuracy compared with the previous models.  相似文献   

2.
Fed‐batch synthesis of galacto‐oligosaccharides (GOS) from lactose with β‐galactosidase from Aspergillus oryzae was evaluated experimentally and reaction yield was maximized via optimal control technique. The optimal lactose and enzyme feed flow rate profiles were determined using a model for GOS synthesis previously reported by the authors. Experimentally it was found that fed‐batch synthesis allowed an increase on the maximum total GOS concentration from 115 (batch synthesis) to 218 g L?1 as consequence of the increase in total sugars concentration from 40 to 58% w/w. Such high concentration of total sugars was not attainable in batch operation because of the low solubility of lactose at the reaction temperature (40°C). Simulations predicted a GOS yield of 32.5 g g?1 in fed‐batch synthesis under optimal conditions, while experimentally the same yield as in batch synthesis was obtained (28 g g?1). Besides, an enrichment of total oligosaccharides in GOS with a high polymerization degree (GOS‐5 and GOS‐6) was observed in the fed‐batch synthesis. Experimental profiles for all sugars were similar to the ones predicted by simulation, which supports the use of this methodology for the optimization of GOS synthesis. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:59–67, 2014  相似文献   

3.
The production of galacto-oligosaccharides (GOS) from lactose by A. oryzae beta-galactosidase immobilized on cotton cloth was studied. The total amounts and types of GOS produced were mainly affected by the initial lactose concentration in the reaction media. In general, more and larger GOS can be produced with higher initial lactose concentrations. A maximum GOS production of 27% (w/w) of initial lactose was achieved at 50% lactose conversion with 500 g/L of initial lactose concentration. Tri-saccharides were the major types of GOS formed, accounting for more than 70% of the total GOS produced in the reactions. Temperature and pH affected the reaction rate, but did not result in any changes in GOS formation. The presence of galactose and glucose at the concentrations encountered near maximum GOS greatly inhibited the reactions and reduced GOS yield by as much as 15%. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme, suggesting no diffusion limitation in the enzyme carrier. The thermal stability of the enzyme increased approximately 25-fold upon immobilization on cotton cloth. The half-life for the immobilized enzyme on cotton cloth was more than 1 year at 40 degrees C and 48 days at 50 degrees C. Stable, continuous operation in a plugflow reactor was demonstrated for 2 weeks without any apparent problem. A maximum GOS production of 21 and 26% (w/w) of total sugars was attained with a feed solution containing 200 and 400 g/L of lactose, respectively, at pH 4.5 and 40 degrees C. The corresponding reactor productivities were 80 and 106 g/L/h, respectively, which are at least several-fold higher than those previously reported.  相似文献   

4.
Galacto-oligosaccharides (GOS) were synthesized from lactose by immobilized and free -galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP-G) using either focused microwave irradiation or conventional heating. Immobilization of the -galactosidase on to Duolite A-568 increased the synthesis of GOS. GOS selectivity (GOS synthesis/lactose hydrolysis ratio) increased when the water activity of the media was reduced, notably with a high initial lactose concentration but also by using co-solvents in the media. The advantage of microwave heating on GOS formation was also examined. Addition of solvent and carrying out the reaction under microwave irradiation resulted an increase in the production of GOS. The selectivity for GOS synthesis can be increased by 217-fold under microwave irradiation, using immobilized -glucosidase and with added co-solvents such as hexanol.  相似文献   

5.
R C Dickson 《Gene》1980,10(4):347-356
Three recombinant DNA vectors carrying the β-galactosidase structural gene, LAC4, from the yeast Kluyveromyces lactis were constructed and transformed into Saccharomyces cerevisiae. All transformants expressed the β-galactosidase activity of LAC4. However, the level of enzyme activity varied, being highest in cells transformed with vectors which are maintained as multicopy plasmids and lowest in cells transformed with a vector which integrates into chromosomes. Enzyme levels probably reflect gene dosage. LAC4 is very stable when integrated into a chromosome, but unstable when carried on a plasmid. Therefore, stability is a property of the recombinant vector rather than of LAC4, LAC4-coded β-galactosidase synthesized in either S. cerevisiae or in K. lactis is the same as judged by two-dimensional polyacrylamide gel electrophoresis. However, S. cerevisiae transformed with  相似文献   

6.
Mammalian milk or colostrum contains up to 10% of carbohydrate, of which free lactose usually constitutes more than 80%. Lactose is synthesized within lactating mammary glands from uridine diphosphate galactose (UDP-Gal) and glucose by a transgalactosylation catalysed by a complex of β4-galactosyltransferase and α-lactalbumin (α-LA). α-LA is believed to have evolved from C-type lysozyme. Mammalian milk or colostrum usually contains a variety of oligosaccharides in addition to free lactose. Each oligosaccharide has a lactose unit at its reducing end; this unit acts as a precursor that is essential for its biosynthesis. It is generally believed that milk oligosaccharides act as prebiotics and also as receptor analogues that act as anti-infection factors. We propose the following hypothesis. The proto-lacteal secretions of the primitive mammary glands of the common ancestor of mammals contained fat and protein including lysozyme, but no lactose or oligosaccharides because of the absence of α-LA. When α-LA first appeared as a result of its evolution from lysozyme, its content within the lactating mammary glands was low and lactose was therefore synthesized at a slow rate. Because of the presence of glycosyltransferases, almost all of the nascent lactose was utilized for the biosynthesis of oligosaccharides. The predominant saccharides in the proto-lacteal secretions or primitive milk produced by this common ancestor were therefore oligosaccharides rather than free lactose. Subsequent to this initial period, the oligosaccharides began to serve as anti-infection factors. They were then recruited as a significant energy source for the neonate, which was achieved by an increase in the synthesis of α-LA. This produced a concomitant increase in the concentration of lactose in the milk, and lactose therefore became an important energy source for most eutherians, whereas oligosaccharides continued to serve mainly as anti-microbial agents. Lactose, in addition, began to act as an osmoregulatory molecule, controlling the milk volume. Studies on the chemical structures of the milk oligosaccharides of a variety of mammalian species suggest that human milk or colostrum is unique in that oligosaccharides containing lacto-N-biose I (LNB) (Gal(β1 → 3)GlcNAc, type I) predominate over those containing N-acetyllactosamine (Gal(β1 → 4)GlcNAc, type II), whereas in other species only type II oligosaccharides are found or else they predominate over type I oligosaccharides. It can be hypothesized that this feature may have a selective advantage in that it may promote the growth of beneficial colonic bacteria, Bifidobacteria, in the human infant colon.  相似文献   

7.
A pseudo steady‐state model for the kinetically controlled synthesis of galacto‐oligosaccharides (GOS) with Aspergillus oryzae β‐galactosidase is presented. The model accounts for the dynamics of lactose consumption and production of galactose, glucose, di, tri, tetra, and penta‐oligosaccharides during the synthesis, being able to describe the total GOS content in the reaction medium at the experimental conditions evaluated. Experimental results show that the formation of GOS containing only galactose residues is significant at high conversions of substrate, which was taken into account in the model. The formation of enzyme transition complexes was considered and reasonable assumptions were made to reduce the number of parameters to be determined. The model developed has 8 parameters; 2 of them were experimentally determined and the other 6 were estimated by fitting to the experimental data using multiresponse regression. Temperature effect on kinetic and affinity constants was determined in the range from 40 to 55°C, and the data were fitted to Arrhenius type equation. Parameters of the proposed model are independent from the enzyme load in the reaction medium and, differently from previously reported models, they have a clear biochemical meaning. The magnitude of the kinetic and affinity constants of the enzyme suggests that the liberation of galactose from the galactosyl–enzyme complex is a very slow reaction and such complex is driven into GOS formation. It also suggests that the affinity for sugars of the galactosyl–enzyme complex is higher than that of the free enzyme. Biotechnol. Bioeng. 2011;108: 2270–2279. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Hydrolysis of lactose by hyperthermophilic beta-glycosidases from the archaea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB) was carried out at 70 degrees C in a continuous stirred-tank reactor (CSTR) coupled to a 10-kDa cross-flow ultrafiltration module to recycle the enzyme. Recirculation rates of > or =1 min(-1), reaction of proteins with reducing sugars, and enzyme adsorption onto the membrane are major "operational" factors of enzyme inactivation in the CSTR. They cause the half-life times of SsbetaGly and CelB to be reduced two- and eight-fold, respectively, the average value for both enzymes now being approximately 5 to 7 days. Using lactose at initial concentrations of 45 and 170 g/L, the CSTR was operated at a constant conversion level of approximately 80% for more than 2 weeks without the occurrence of microbial contamination. The productivities for the SsbetaGly-catalyzed conversion of lactose were determined at different dilution rates and initial substrate concentrations, and exceed by a factor of < or =2 those observed with CelB under otherwise identical conditions. This difference reflects the approximately eight-fold stronger product inhibition of CelB by D-glucose. While the maximum total galacto-oligosaccharide production (90-100 mM) at 170 g/L lactose in the CSTR was not different from that in the batch reactor (CelB) or was greater by approximately 25% (SsbetaGly), continuous and batchwise reactions with both enzymes differed markedly with regard to relative proportions of the individual saccharide components present at 80% substrate conversion. The CSTR yielded an up to four-fold greater ratio of disaccharides to trisaccharides concomitant with a 5- to 30-fold larger relative proportion of beta-D-Galp-(1-->3)-D-Glc in the product mixture. The results show that apart from continuous hydrolysis of lactose at 70 degrees C, a CSTR charged with SsbetaGly or CelB and operated at steady-state conditions could be a useful reaction system for the production of galacto-oligosaccharides in which composition is narrower and more easily programmable, in terms of the individual components contained, as compared to the batchwise reaction.  相似文献   

9.
Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced.  相似文献   

10.
11.
Aims: Kluyveromyces lactis was cultured in cheese whey permeate on both batch and continuous mode to investigate the effect of time course and growth rate on β‐galactosidase activity, lactose consumption, ethanol production and protein profiles of the cells. Methods and Results: Cheese whey was the substrate to grow K. lactis as a batch or continuous culture. In order to precise the specific growth rate for maximum β‐galactosidase activity a continuous culture was performed at five dilution (growth) rates ranging from 0·06, 0·09, 0·12, 0·18 to 0·24 h?1. The kinetics of lactose consumption and ethanol production were also evaluated. On both batch and continuous culture a respirofermentative metabolism was detected. The growth stage for maximum β‐gal activity was found to be at the transition between late exponential and entrance of stationary growth phase of batch cultures. Fractionating that transition stage in several growth rates at continuous culture a maximum β‐galactosidase activity at 0·24 h?1 was observed. Following that stage β‐gal activity undergoes a decline which does not correlate to the density of its corresponding protein band on the gel prepared from the same samples. Conclusion: The maximum β‐galactosidase activity per unit of cell mass was found to be 341·18 mmol ONP min?1 g?1 at a dilution rate of 0·24 h?1. Significance and Impact of the Study: The physiology of K. lactis growing in cheese whey permeate can proven useful to optimize the conversion of that substrate in biomass rich in β‐gal or in ethanol fuel. In addition to increasing the native enzyme the conditions established here can be set to increase yields of recombinant protein production based on the LAC4 promoter in K. lactis host.  相似文献   

12.
Kluyveromyces marxianus CBS 6164 cells, free or immobilized in Ca-alginate (2%) beads, are able to consume more than 99% of the skim milk lactose in anaerobic conditions. In batches at 30 °C, the lactose consumption after 3.5 h of skim milk fermentation by 30 and 50 g free K. marxianus cells per liter was around 99 and 99.6% respectively, with an approximate conversion of lactose to ethanol and CO2 of 80%. The immobilized cells, easy to handle and showing a faster and easier separation from the fermented medium compared to the free ones, were used in more than 23 batches (cycles of re-use) without losing their activity.  相似文献   

13.
Commercially available lactase (beta-D-galactoside galactohydrolase, EC 3.2.1.23) enzymes produced from Kluyveromyces fragilis and Kluyveromyces lactis were accessed as catalysts for use in the production of beta-galactopyranosides of various alcohols using lactose as galactosyl donor. The yield of galactoside was enhanced by using the highest practical concentrations of both lactose and alcohol acceptor. The concentrations and thus yield, were limited by the solubility of the substrates. The increase in galactoside yield with increasing lactose concentration appeared to be specific to the lactose substrate and not due to water activity alterations, because addition of maltose to a fixed concentration of lactose had no effect. During the course of the reaction, the yield of galactoside peaked after around 70% to 80% of the lactose was consumed, due to hydrolysis of the product by the enzyme. A wide variety of compounds with primary or secondary hydroxyl groups could act as acceptors, the essential requirement being at least some water solubility. Addition of organic cosolvents had little effect on galactoside yield except when it increased the water solubility of sparingly soluble alcohols. Some galactosides were synthesized on a gram scale to determine practical product recoveries and improve purification methods for large-scale synthesis. Initial purification by hydrophobic chromatography (for galactosides of hydrophobic alcohols) or strong anion-exchange chromatography (for galactosides of hydrophilic alcohols) separated galactosides, galactobiosides, and higher oligomers from reducing sugars. A facile separation of the galactoside and galactobioside could then be effected by flash chromatography on silica gel. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
Three recombinant DNA vectors carrying the β-galactosidase structural gene, LAC4, from the yeast Kluyveromyces lactis were constructed and transformed into Saccharomyces cerevisiae. All transformants expressed the β-galactosidase activity of LAC4. However, the level of enzyme activity varied, being highest in cells transformed with vectors which are maintained as multicopy plasmids and lowest in cells transformed with a vector which integrates into chromosomes. Enzyme levels probably reflect gene dosage. LAC4 is very stable when integrated into a chromosome, but unstable when carried on a plasmid. Therefore, stability is a property of the recombinant vector rather than of LAC4, LAC4-coded β-galactosidase synthesized in either S. cerevisiae or in K. lactis is the same as judged by two-dimensional polyacrylamide gel electrophoresis. However, S. cerevisiae transformed with  相似文献   

15.
Previous models based on the Michaelis-Menten kinetic equation, that glucose was not used as an acceptor, did not explain our experimental data for lactose conversion by a recombinant beta-galactosidase from Kluyeromyces lactis. In order to create a new kinetic model based on the data, the effects of galactose and glucose on beta-galactosidase activity were investigated. Galactose acted as an inhibitor at low concentrations of galactose and lactose, but did not inhibit the activity of beta-galactosidase at high concentrations of galactose (above 50mM) and lactose (above 100mM). The addition of glucose at concentrations below 50mM resulted in an increased reaction rate. A new model of K. lactis beta-galactosidase for both hydrolysis and transgalactosylation reactions with glucose and lactose as acceptors was proposed. The proposed model was fitted well to the experimental data of the time-course reactions for lactose conversion by K. lactis beta-galactosidase at various concentrations of substrate.  相似文献   

16.
Growth, lactose utilization and S-adenosyl-l-methionine (AdoMet) production by Kluyveromyces lactis AM-65 on whey in batch fermentation were investigated and an unstructured model of the process has been derived. The optimal set of parameters was estimated by fitting the model to experimental results. After incubation for 20 h the optimal fermentation conditions (28.5 °C, pH 5.3, agitation at 270 rpm) resulted in AdoMet production at 1.55 g l–1.  相似文献   

17.
Galactooligosaccharides (GOS) are prebiotics produced from lactose through an enzymatic reaction. Employing an immobilized enzyme may result in cost reductions; however, the changes in its kinetics due to immobilization has not been studied. This study experimentally determined the optimal reaction conditions for the production of GOS from lactose by β‐galactosidase (EC 3.2.1.23) from Kluyveromyces lactis covalently immobilized to a polysiloxane‐polyvinyl alcohol (POS‐PVA) polymer activated with glutaraldehyde (GA), and to study the transgalactosylation kinetics. Yield immobilization was 99 ± 1.1% with 78.5 ± 2.4% enzyme activity recovery. An experimental design 24 with 1 center point and 2 replicates was used. Factors were lactose [L], enzyme concentration [E], pH and temperature (T). Response variables were glucose and galactose as monosaccharides [G1], residual lactose [Lac]r and GOS as disaccharides [G2] and trisaccharides [G3]. Best conditions were pH 7.1, 40 °C, 270 gL?1 initial lactose concentration and 6 U mL?1 enzyme concentration, obtaining 25.46 ± 0.01 gL?1 yield of trisaccharides. Although below the HPLC‐IR detection limit, tetrasaccharides were also identified after 115 min of reaction. The immobilization protocol was then optimized by diminishing total reactant volumes : support ratio, resulting in improved enzyme activity synthesizing 43.53 ± 0.02 gL?1 of trisaccharides and 13.79 ± 0.21 gL?1 of tetrasaccharides, and after four cycles remaining relative activity was 94%. A reaction mechanism was proposed through which a mathematical model was developed and rate constants were estimated, considering a pseudo steady‐state hypothesis for two concomitant reactions, and from this simplified analysis, the reaction yield could eventually be improved. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1568–1578, 2017  相似文献   

18.
The fermentation of lactose (Lac+) in the dairy yeast Kluyveromyces lactis var. lactis is controlled by the LAC4 (β-galactosidase) and LAC12 (lactose permease) genes. The complementation analysis of twelve Kl. lactis var. drosophilarum natural homothallic Lac? strains of different origin was carried out using the genetic heterothallic lines of Kl. lactis var. lactis of the lac4LAC12 and LAC4lac12 genotypes. It was shown that the natural Lac? strains did not possess the LAC4LAC12 gene cluster. Southern hybridization of chromosomal DNA with LAC4 and LAC12 probes, as well as recombination analysis, showed that Kl. lactis var. drosophilarum yeasts do not have even silent copies of these genes. As distinct from this yeast, natural Lac? strains of the yeast Kl. marxianus are mutants impaired in the lactose permease gene (lac12 analogue), but possess an active β-galactosidase gene (LAC4 analogue). The origin of the LAC4LAC12 gene cluster of the dairy yeasts Kl. lactis is discussed.  相似文献   

19.
Summary Mammary epithelial cells from lactating mice synthesize and secrete lactose in culture and retain many features of their in vivo morphology if mammary glands are only partially dissociated to alveoli, rather than completely dissociated to single cells. After 5 d in culture lactose synthesis by alveoli cultured on floating collagen gels is 10 to 20 times higher than in cultures of single cells on floating collagen gels. Moreover, mammary alveoli in culture retain sensitivity to lactogenic hormones; the synthesis of lactose by alveoli depends on the continued presence of insulin and either hydrocortisone or prolactin. In addition, within alveoli the original juxtaposition of constituent epithelial cells is retained, and cells are cuboidal and have many microvilli and fat droplets. In contrast, alveoli on attached gels flatten and lose their secretory morphology. These results indicate that the shape of the cells, presence of lactogenic hormones, and maintenance of epithelial:epithelial cell contacts are required for maintenance of mammary epithelial cell differentiation in culture. This research was supported by Grants CA-16392 and AG-02909 from the National Institutes of Health and Institutional Grant IN 119 from the American Cancer Society.  相似文献   

20.
A new hydrophobic and catalytic membrane was prepared by immobilizing Penicillin G acylase (PGA, EC.3.5.1.11) from E. coli on a nylon membrane, chemically grafted with butylmethacrylate (BMA). Hexamethylenediamine (HMDA) and glutaraldehyde (Glu) were used as a spacer and coupling agent, respectively. PGA was used for the enzymatic synthesis of cephalexin, using D(-)-phenylglycine methyl ester (PGME) and 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) as substrates. Several factors affecting this reaction, such as pH, temperature, and concentrations of substrates were investigated. The results indicated good enzyme-binding efficiency of the pre-treated membrane, and an increased stability of the immobilized PGA towards pH and temperature. Calculation of the activation energies showed that cephalexin production by the immobilized biocatalyst was limited by diffusion, resulting in a decrease of enzyme activity and substrate affinity. Temperature gradients were employed as a way to reduce the effects of diffusion limitation. Cephalexin was found to linearly increase with the applied temperature gradient. A temperature difference of about 3 degrees C across the catalytic membrane resulted into a cephalexin synthesis increase of 100% with a 50% reduction of the production times. The advantage of using non-isothermal bioreactors in biotechnological processes, including pharmaceutical applications, is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号