首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
.
  1. Download : Download high-res image (148KB)
  2. Download : Download full-size image
Highlights► Responsive MRI contrast agents enable the study of biochemical events. ► Recent Gd-based contrast agents are reviewed here. ► Responsive agents act by modulating hydration state, molecular tumbling or number of metal centres. ► Promising strategies for future probe design are identified.  相似文献   

2.
Molecular magnetic resonance imaging with targeted contrast agents   总被引:6,自引:0,他引:6  
Magnetic resonance imaging (MRI) produces high-resolution three-dimensional maps delineating morphological features of the specimen. Differential contrast in soft tissues depends on endogenous differences in water content, relaxation times, and/or diffusion characteristics of the tissue of interest. The specificity of MRI can be further increased by exogenous contrast agents (CA) such as gadolinium chelates, which have been successfully used for imaging of hemodynamic parameters including blood perfusion and vascular permeability. Development of targeted MR CA directed to specific molecular entities could dramatically expand the range of MR applications by combining the noninvasiveness and high spatial resolution of MRI with specific localization of molecular targets. However, due to the intrinsically low sensitivity of MRI (in comparison with nuclear imaging), high local concentrations of the CA at the target site are required to generate detectable MR contrast. To meet these requirements, the MR targeted CA should recognize targeted cells with high affinity and specificity. They should also be characterized by high relaxivity, which for a wide variety of CA depends on the number of contrast-generating groups per single molecule of the agent. We will review different designs and applications of targeted MR CA and will discuss feasibility of these approaches for in vivo MRI.  相似文献   

3.
4.
Novel estrogen-conjugated pyridine-containing Gd(III) and Eu(III) contrast agents (EPTA-Gd/Eu) were designed and effectively synthesized. Convenient to administration and MRI experiments, both EPTA-Gd and EPTA-Eu are soluble in water. The EPTA-Gd selectively binds with a micromolar affinity to the estrogen receptor and induces proliferation of human breast cancer cells. The EPTA-Gd is not lethal and does not cause any adverse effects when administrated intravenously. It enhances T1 and T2 nuclear relaxation rates of water and serves as a selective contrast agent for localizing the estrogen receptor by MRI.  相似文献   

5.
6.
To determine the initial feasibility of using magnetic resonance (MR) imaging to detect early atherosclerosis, we investigated inflammatory cells labeled with a positive contrast agent in an endothelial cell-based testing system. The human monocytic cell line THP-1 was labeled by overnight incubation with a gadolinium colloid (Gado CELLTrack) prior to determination of the in vitro release profile from T1-weighted MR images. Next, MR signals arising from both a synthetic model of THP-1/human umbilical vein endothelial cell (HUVEC) accumulation and the dynamic adhesion of THP-1 cells to activated HUVECs under flow were obtained. THP-1 cells were found to be successfully--but not optimally--labeled with gadolinium colloid, and MR images demonstrated increased signal from labeled cells in both the synthetic and dynamic THP-1/HUVEC models. The observed THP-1 contrast release profile was rapid, suggesting the need for an agent that is optimized for retention in the target cells for use in further studies. Detection of labeled THP-1 cells was accomplished with no signal enhancement from unlabeled cells. These achievements demonstrate the feasibility of targeting early atherosclerosis with MR imaging, and suggest that using an in vitro system like the one described provides a rapid, efficient, and cost-effective way to support the development and evaluation of novel MR contrast agents.  相似文献   

7.
8.
Qiao J  Li S  Wei L  Jiang J  Long R  Mao H  Wei L  Wang L  Yang H  Grossniklaus HE  Liu ZR  Yang JJ 《PloS one》2011,6(3):e18103
The application of magnetic resonance imaging (MRI) to non-invasively assess disease biomarkers has been hampered by the lack of desired contrast agents with high relaxivity, targeting capability, and optimized pharmacokinetics. We have developed a novel MR imaging probe targeting to HER2, a biomarker for various cancer types and a drug target for anti-cancer therapies. This multimodal HER20targeted MR imaging probe integrates a de novo designed protein contrast agent with a high affinity HER2 affibody and a near IR fluorescent dye. Our probe can differentially monitor tumors with different expression levels of HER2 in both human cell lines and xenograft mice models. In addition to its 100-fold higher dose efficiency compared to clinically approved non-targeting contrast agent DTPA, our developed agent also exhibits advantages in crossing the endothelial boundary, tissue distribution, and tumor tissue retention over reported contrast agents as demonstrated by even distribution of the imaging probe across the entire tumor mass. This contrast agent will provide a powerful tool for quantitative assessment of molecular markers, and improved resolution for diagnosis, prognosis and drug discovery.  相似文献   

9.
Inorganic nanoparticles (NPs) including semiconductor quantum dots (QDs), iron oxide NPs and gold NPs have been developed as contrast agents for diagnostics by molecular imaging. Compared with traditional contrast agents, NPs offer several advantages: their optical and magnetic properties can be tailored by engineering the composition, structure, size and shape; their surfaces can be modified with ligands to target specific biomarkers of disease; the contrast enhancement provided can be equivalent to millions of molecular counterparts; and they can be integrated with a combination of different functions for multimodal imaging. Here, we review recent advances in the development of contrast agents based on inorganic NPs for molecular imaging, and also touch on contrast enhancement, surface modification, tissue targeting, clearance and toxicity. As research efforts intensify, contrast agents based on inorganic NPs that are highly sensitive, target-specific and safe to use are expected to enter clinical applications in the near future.  相似文献   

10.
This article illustrates some innovative applications of liposomes loaded with paramagnetic lanthanide-based complexes in MR molecular imaging field. When a relatively high amount of a Gd(III) chelate is encapsulated in the vesicle, the nanosystem can simultaneously affect both the longitudinal (R(1)) and the transverse (R(2)) relaxation rate of the bulk H2O H-atoms, and this finding can be exploited to design improved thermosensitive liposomes whose MRI response is not longer dependent on the concentration of the probe. The observation that the liposome compartmentalization of a paramagnetic Ln(III) complex induce a significant R(2) enhancement, primarily caused by magnetic susceptibility effects, prompted us to test the potential of such agents in cell-targeting MR experiments. The results obtained indicated that these nanoprobes may have a great potential for the MR visualization of cellular targets (like the glutamine membrane transporters) overexpressing in tumor cells. Liposomes loaded with paramagnetic complexes acting as NMR shift reagents have been recently proposed as highly sensitive CEST MRI agents. The main peculiarity of CEST probes is to allow the MR visualization of different agents present in the same region of interest, and this article provides an illustrative example of the in vivo potential of liposome-based CEST agents.  相似文献   

11.
12.
Targeted contrast agents for magnetic resonance imaging and ultrasound   总被引:11,自引:0,他引:11  
The development of contrast agents that can be localized to a particular tissue or cellular epitope will potentially allow the noninvasive visualization and characterization of a variety of disease states. Recent advances have been made in the field of molecular imaging with magnetic resonance imaging and ultrasound and varied approaches have been devised to overcome the high background tissue signal. The types of agents and applications developed include gadolinium-conjugated targeting molecules for imaging of fibrin, superparamagnetic iron oxide particles for stem-cell tracking, multimodal perfluorocarbon nanoparticles for visualization of angiogenesis, liposomes for targeting atheroma components, and microbubbles for imaging transplant rejection.  相似文献   

13.
The structure of Gd-DTPA-polylysine, Gd-DOTA-polylysine, Gd-SCN-Bz-DOTA-polylysine, and Gd-DTPA-poly(glu:lys) was investigated with circular dichroism, gel permeation chromatography, low angle light scattering, and proton longitudinal relaxivity. Molecular modeling calculations were performed and predicted helical secondary structure for charged Gd-chelator residues, i.e., Gd-DTPA, when the DTPA conjugation levels reached 90% and higher. This helical secondary structure was observed with circular dichroism. The conformational transition from coiled to extended linear was observed also by gel permeation chromatography and by proton relaxivity measurements. The helical secondary structure was not observed when the chelator was changed to DOTA. The residue charge interactions were eliminated in this case since the Gd-DOTA complex had no net charge. For this construct, the gel permeation and relaxivity measurements indicated a coiled conformation. An extended linear conformation was regained when the chelator complex was changed to Gd-SCN-Bz-DOTA, which had a net negative charge. The functional aspects of these structures were investigated by MR imaging of an animal tumor model. The linear extended polymer constructs gave 10-fold higher tumor signals then the coiled-collapsed constructs, indicating a much higher degree of trans-endothelial transport in the tumors.  相似文献   

14.
Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.  相似文献   

15.
Novel dibenzoazepine and 11-oxo-dibenzodiazepine derivatives are shown to be effective ventricular defibrillating drug candidates. They exhibit significant in vivo defibrillatory activity with no observed changes in ECG either before or after the VF event. These compounds also exhibit antifibrillatory activity by elevating the fibrillation threshold potential, all suggesting that such drugs could be used to treat VF either by themselves or together with electrical defibrillators.  相似文献   

16.
A versatile method is disclosed for solid-phase peptide synthesis (SPPS) of molecular imaging contrast agents. A DO3A moiety was derivatized to introduce a CBZ-protected amino group and then coupled to a polymeric support. CBZ cleavage with Et2AlCl/thioanisole was optimized for SPPS. Amino acids were then coupled to the aminoDOTA-loaded resin using conventional stepwise Fmoc SPPS to create a product with DOTA coupled to the C-terminus of the peptide. In a second study, the DO3A moiety was coupled to a glycine-loaded polymeric support, and amino acids were then coupled to the amino-DOTA-peptide-loaded resin using SPPS to incorporate DOTA within the peptide sequence. The peptide-(Tm3+-DOTA) amide showed a paramagnetic chemical exchange saturation transfer (PARACEST) effect, which demonstrated the utility of this contrast agent for molecular imaging. These results demonstrate the advantages of exploiting SPPS methodologies through development of unique DOTA derivatives to create peptide-based molecular imaging contrast agents.  相似文献   

17.
This paper presents the views of a coordination chemist on the synthesis and the properties of new contrast agents containing gadolinium. Attention is drawn to various macrocyclic complexes such as the polyaza polycarboxylic chelates, the cryptates as well as compounds obtained by template synthesis. The structural factors influencing the kinetic and thermodynamic stability of the gadolinium complexes are discussed with special emphasis on the polyaza polycarboxylic derivatives. Some of the macrocyclic complexes under investigation are more stable than Gd-DTPA.  相似文献   

18.
19.
Based on a commercially available hyperbranched aliphatic polyester, novel multifunctional gadolinium complexes were prepared bearing protective PEG chains, a folate targeting ligand and EDTA or DTPA chelate moieties. Their relatively high water relaxivity values coupled with biodegradability of the hyperbranched scaffold, folate receptor specificity render these non-toxic dendritic polymers promising candidates for MRI applications.  相似文献   

20.
Functional imaging with MRI contrast agents is an emerging experimental approach that can combine the specificity of cellular neural recording techniques with noninvasive whole-brain coverage. A variety of contrast agents sensitive to aspects of brain activity have recently been introduced. These include new probes for calcium and other metal ions that offer high sensitivity and membrane permeability, as well as imaging agents for high-resolution pH and metabolic mapping in living animals. Genetically encoded MRI contrast agents have also been described. Several of the new probes have been validated in the brain; in vivo use of other agents remains a challenge. This review outlines advantages and disadvantages of specific molecular imaging approaches and discusses current or potential applications in neurobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号