首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox state of the mitochondria of Acanthamoeba castellanii and Schizosaccharomyces pombe was assessed with a flying-spot fluorometer (Chance et al. 1978. Am. J. Physiol. 235:H 809) that provides excitation appropriate for oxidized flavoprotein or reduced pyridine nucleotide. Fluorescence signals could be resolved from the thin films of cultures that were only one cell deep. In both organisms anoxia was associated with an increased pyridine nucleotide and decreased flavoprotein fluorescence. The addition of mitochondrial uncoupling agents increased the flavoprotein fluorescence and the fluorometer was able to resolve uncoupler-sensitive and uncoupler-insensitive fractions of S. pombe cultures. In both synchronous and asynchronous cultures of A. castellanii and S. pombe the mitochondrial redox state oscillates with a period of 4.5 +/- 1.0 min. Oscillations with much longer period, of the order of an hour, are observed in synchronous cultures and these oscillations correlate with similar oscillations in respiratory rate, uncoupler sensitivity, and adenine nucleotide pool sizes. The results are consistent with the hypothesis that synchronous cultures of A. castellanii and S. pombe oscillate between the ADP-limited (state 4) and ADP-sufficient (state 3) respiratory states, i.e., exhibit in vivo respiratory control.  相似文献   

2.
Progression through the cell cycle relies on the activities of cyclin-dependent kinases (Cdk), which in turn are modulated by inhibitory proteins such as p21(waf1/cip1) that are induced when genomic damage occurs. In this study, we show that exposure of normal mammalian cells, such as NIH3T3 fibroblasts, to UVC (25 J/m2, at 254 nm) induces the expression of p21 without causing significant apoptosis, whereas similar treatment of Chinese hamster ovary (CHO-K1) cells with UVC causes apoptosis without inducing p21. The absence of p21 in UV-irradiated CHO-K1 cells is accompanied by the deregulation of Cdk2 activity. The elevation of Cdk2 activity correlates with the increase of UV-induced apoptosis, which can be suppressed by small-molecule Cdk2 inhibitors such as roscovitine and pyrrolidine dithiocarbamate. The results of this study suggest that the deregulation of Cdk2 activity may be critical to UV-induced apoptosis in CHO-K1 cells.  相似文献   

3.
The gamma-tubulin complex, via its ability to organize microtubules, is critical for accurate chromosome segregation and cytokinesis in the fission yeast, Schizosaccharomyces pombe. To better understand its roles, we have purified the S. pombe gamma-tubulin complex. Mass spectrometric analyses of the purified complex revealed known components and identified two novel proteins (i.e., Mbo1p and Gfh1p) with homology to gamma-tubulin-associated proteins from other organisms. We show that both Mbo1p and Gfh1p localize to microtubule organizing centers. Although cells deleted for either mbo1(+) or gfh1(+) are viable, they exhibit a number of defects associated with altered microtubule function such as defects in cell polarity, nuclear positioning, spindle orientation, and cleavage site specification. In addition, mbo1Delta and gfh1Delta cells exhibit defects in astral microtubule formation and anchoring, suggesting that these proteins have specific roles in astral microtubule function. This study expands the known roles of gamma-tubulin complex components in organizing different types of microtubule structures in S. pombe.  相似文献   

4.
5.
The PAK family kinase, Shk1, is an essential regulator of polarized growth in the fission yeast, Schizosaccharomyces pombe. Here we describe the characterization of a novel member of the RhoGAP family, Rga8, identified from a two-hybrid screen for proteins that interact with the Shk1 kinase domain. Although deletion of the rga8 gene in wild type S. pombe cells results in no obvious phenotypic defects under normal growth conditions, it partially suppresses the cold-sensitive growth and morphological defects of S. pombe cells carrying a hypomorphic allele of the shk1 gene. By contrast, overexpression of rga8 is lethal to shk1-defective cells and causes morphological and cytokinesis defects in wild type S. pombe cells. Consistent with a role for Rga8 as a downstream target of Shk1, we show that the Rga8 protein is directly phosphorylated by Shk1 in vitro and phosphorylated in a Shk1-dependent fashion in S. pombe cells. Fluorescence photomicroscopy of the GFP-Rga8 fusion protein indicates that Rga8 is localized to the cell ends during interphase and to the septum-forming region during cytokinesis. In S. pombe cells carrying the orb2-34 allele of shk1, Rga8 exhibits a monopolar pattern of localization, providing evidence that Shk1 contributes to the regulation of Rga8 localization. Although molecular analyses suggest that Rga8 functions as a GAP for the S. pombe Rho1 GTPase, genetic experiments suggest that Rga8 and Rho1 have a positive functional interaction and that gain of Rho1 function, like gain of Rga8 function, is lethal to Shk1-defective cells. Our results suggest that Rga8 is a Shk1 substrate that negatively regulates Shk1-dependent growth control pathway(s) in S. pombe, potentially through interaction with the Rho1 GTPase.  相似文献   

6.
The MAPKK Byr1 is an essential component of a Ras-dependent MAPK module required for sexual differentiation in the fission yeast, Schizosaccharomyces pombe. Here we describe the genetic and molecular characterization of a highly conserved protein, Bob1, which was identified from a two-hybrid screen for Byr1-interacting proteins. Byrl and Bobl proteins coprecipitate from S. pombe cell lysates, and both proteins localize to the tips and septa of S. pombe cells. S. pombe bob1 null (bob1delta) mutants lack obvious growth defects but exhibit a significant mating deficiency, which can be suppressed by overexpression of Byrl. Overexpression of Bob1 also leads to inhibition of mating in S. pombe, and this defect is likewise suppressed by Byrl overexpression. Bob1 is highly homologous in structure to the mammalian MM-1/Pfd5 and budding yeast Gim5/Pfd5-Sc proteins, which have been implicated as regulators of actin and tubulins. Similar to budding yeast gim5/pfd5-Sc mutants, S. pombe bob1delta cells have cytoskeletal defects, as judged by hypersensitivity to cytoskeletal disrupting drugs. byr1delta mutants do not share this characteristic with bob1delta mutants, and byr1delta bob1delta mutants are not significantly more sensitive to cytoskeletal disrupting drugs than cells carrying only the bob1delta mutation. Taken together, our results suggest that Bob1 has Byr1-related function(s) required for proper mating response of S. pombe cells and Byrl-independent function(s) required for normal cytoskeletal control. We show that the human MM-1/Pfd5 protein can substitute for its counterpart in fission yeast, providing evidence that the functions of Bob1-related proteins have been highly conserved through evolution. Our results lead us to propose that Bob1-related proteins may play diverse roles in eukaryotic organisms.  相似文献   

7.
We have characterized Schizosaccharomyces pombe open reading frames encoding potential orthologues of constituents of the evolutionarily conserved Saccharomyces cerevisiae Nup84 vertebrate Nup107-160 nuclear pore subcomplex, namely Nup133a, Nup133b, Nup120, Nup107, Nup85, and Seh1. In spite of rather weak sequence conservation, in vivo analyses demonstrated that these S. pombe proteins are localized at the nuclear envelope. Biochemical data confirmed the organization of these nucleoporins within conserved complexes. Although examination of the S. cerevisiae and S. pombe deletion mutants revealed different viability phenotypes, functional studies indicated that the involvement of this complex in nuclear pore distribution and mRNA export has been conserved between these highly divergent yeasts. Unexpectedly, microscopic analyses of some of the S. pombe mutants revealed cell division defects at the restrictive temperature (abnormal septa and mitotic spindles and chromosome missegregation) that were reminiscent of defects occurring in several S. pombe GTPase Ran (Ran(Sp))/Spi1 cycle mutants. Furthermore, deletion of nup120 moderately altered the nuclear location of Ran(Sp)/Spi1, whereas overexpression of a nonfunctional Ran(Sp)/Spi1-GFP allele was specifically toxic in the Deltanup120 and Deltanup133b mutant strains, indicating a functional and genetic link between constituents of the S. pombe Nup107-120 complex and of the Ran(Sp)/Spi1 pathway.  相似文献   

8.
Schizosaccharomyces pombe Rhp55 and Rhp57 are RecA-like proteins involved in double-strand break (DSB) repair. Here we demonstrate that Rhp55 and Rhp57 proteins strongly interact in vivo, similar to Saccharomyces cerevisiae Rad55p and Rad57p. Mutations in the conserved ATP-binding/hydrolysis folds of both the Rhp55 and Rhp57 proteins impaired their function in DNA repair but not in cell proliferation. However, when combined, ATPase fold mutations in Rhp55p and Rhp57p resulted in severe defects of both functions, characteristic of the deletion mutants. Yeast two-hybrid analysis also revealed other multiple in vivo interactions among S. pombe proteins involved in recombinational DNA repair. Similar to S. cerevisiae Rad51p-Rad54p, S. pombe Rhp51p and Rhp54p were found to interact. Both putative Rad52 homologs in S. pombe, Rad22p and Rti1p, were found to interact with the C-terminal region of Rhp51 protein. Moreover, Rad22p and Rti1p exhibited mutual, as well as self-, interactions. In contrast to the S. cerevisiae interacting pair Rad51p-Rad55p, S. pombe Rhp51 protein strongly interacted with Rhp57 but not with Rhp55 protein. In addition, the Rti1 and Rad22 proteins were found to form a complex with the large subunit of S. pombe RPA. Our data provide compelling evidence that most, but not all, of the protein-protein interactions found in S. cerevisiae DSB repair are evolutionarily conserved.  相似文献   

9.
The p21-activated kinase (PAK) homolog Shk1 is essential for cell viability in the fission yeast Schizosaccharomyces pombe. Roles have been established for Shk1 in the regulation of cell morphology, sexual differentiation, and mitosis in S. pombe. In this report, we describe the genetic and molecular characterization of a novel SH3 domain protein, Skb5, identified as a result of a two-hybrid screen for Shk1 interacting proteins. S. pombe cells carrying a deletion of the skb5 gene exhibit no discernible phenotypic defects under normal growth conditions, but when subjected to hypertonic stress, become spheroidal in shape and growth impaired. Both of these defects can be suppressed by overexpression of the Shk1 modulator, Skb1. The growth inhibition that results from overexpression of Shk1 in S. pombe cells is markedly suppressed by a null mutation in the skb5 gene, suggesting that Skb5 contributes positively to the function of Shk1 in vivo. Consistent with this notion, we show that Skb5 stimulates Shk1 catalytic function in S. pombe cells. Furthermore, and perhaps most significantly, we show that bacterially expressed recombinant Skb5 protein directly stimulates the catalytic activity of recombinant Shk1 kinase in vitro. These and additional data described herein demonstrate that Skb5 is a direct activator of Shk1 in fission yeast.  相似文献   

10.
11.
By computer analysis of the known data bases, we have established that the open reading frames (ORF) coding for proteins that possess high degree of homology with procaryotic DNA-(amino)methyltransferases are present in the genomes of Leishmania major, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens. Conservative motifs typical for bacterial DNA-(amino)methyltransferases are detected in the amino acid sequences of these putative proteins. The ORF of all putative eucaryotic DNA-(amino)methyl-transferases found are encoded in nuclear DNA. In mitochondrial genomes including a few fully sequenced higher plant mtDNA, nucleotide sequences significantly homologous to genes of procaryotic DNA-(amino)methyltransferases are not found. Thus, ORF homologous to bacterial adenine DNA-methyltransferases are present in nuclei of protozoa, yeasts, insects, nematodes, vertebrates, higher plants, and other eucaryotes. A special search for corresponding proteins and, in particular, adenine DNA-methyltransferases in these organisms and a study of their functions are quite promising.  相似文献   

12.
Tyr-phosphorylation in Saccharomyces cerevisiae is essential in controlling the activity of MAP kinase regulating mating, pseudohyphal growth, and cell wall biosynthesis. Yeast serves as a model system for studying the biological function of many protein kinases and PTPs. Two LMW-PTP from yeast have been cloned, namely, Ltp1 from S. cerevisiae and Stp1 from Schizosaccharomyces pombe. The sequences of both enzymes are relatively similar to those of the mammalian LMW-PTP. Recently we showed that the yeast immunophilin Fpr3 interacts with Stp1 and its dephosphorylated state induces a growth defective phenotype. Here we show the phosphatase activity of Ltp1 on Fpr3 and we demonstrated that Tyr 184 is the residue phosphorylated on in vivo Fpr3. We also described the marked activation of Ltp1 by adenine in S. cerevisiae proteome and determined in vivo the influence of tyrosine phosphorylation on Fpr3 localization.  相似文献   

13.
Inhibition of fatty acid synthase (FAS) induces apoptosis in human breast cancer cells in vitro and in vivo without toxicity to proliferating normal cells. We have previously shown that FAS inhibition causes a rapid increase in malonyl-CoA levels identifying malonyl-CoA as a potential trigger of apoptosis. In this study we further investigated the role of malonyl-CoA during FAS inhibition. We have found that: [i] inhibition of FAS with cerulenin causes carnitine palmitoyltransferase-1 (CPT-1) inhibition and fatty acid oxidation inhibition in MCF-7 human breast cancer cells likely mediated by elevation of malonyl-CoA; [ii] cerulenin cytotoxicity is due to the nonphysiological state of increased malonyl-CoA, decreased fatty acid oxidation, and decreased fatty acid synthesis; and [iii] the cytotoxic effect of cerulenin can be mimicked by simultaneous inhibition of CPT-1, with etomoxir, and fatty acid synthesis with TOFA, an acetyl-CoA carboxylase (ACC) inhibitor. This study identifies CPT-1 and ACC as two new potential targets for cancer chemotherapy.  相似文献   

14.
We have identified a novel human gene by virtue of its ability to complement the rad1-1 checkpoint mutant of Schizosaccharomyces pombe. This gene, called RACH2, rescues the temperature-sensitive lethality of a rad1-1 wee1-50 double mutant of S. pombe. Expression of RACH2 in S. pombe rad1-1 strains partially restores UV resistance to the rad1-1 mutant strain. Expression of RACH2 in a rad1-1 cdc25-22 double mutant partially restores the dose-dependent delay in mitotic entry after irradiation that is lost in rad1-1 checkpoint-deficient mutants. Overexpression of RACH2 in human tissue culture cells induces apoptosis.  相似文献   

15.
Observation of the growth of some adenineless mutants of Schizosaccharomyces pombe on six substituted purine analogs leads to the hypothesis that an enzyme is present which catalyzes the conversion of these analogs into hypoxanthine. The enzyme adenase (adenine aminohydrolase, EC 3.5.4.2) has been found to be active in cell-free extracts of S. pombe. Results are reported which are in agreement with the hypothesis that this enzyme is responsible for the in vivo utilization of 6-chloropurine. This evidence comes mainly from a study of adenine aminohydrolase in two mutants selected for partial inability to grow on 6-chloropurine.  相似文献   

16.
Hyaluronan binding protein (HABP1), located on human chromosome 17p13.3, was identified and characterized as being involved in cellular signaling from our laboratory. Here, we demonstrate that HABP1 expression in Schizosaccharomyces pombe induces growth inhibition, morphological abnormalities like elongation, multinucleation and aberrant cell septum formation in several strains of S. pombe, implicating its role in cell cycle progression and cytokinesis. This argument is further strengthened by an observed delay in the maximal expression of cell cycle regulatory proteins like CDC 2 and CDC 25 coupled to the direct interaction of HABP1 with CDC 25. In order to pinpoint the interacting domain of HABP1, its N- and C-terminal truncated variants (DeltaN.HABP1 and DeltaC.HABP1, respectively) were utilized which revealed that while expression of the former did not alter the phenotype, the latter generated morphological changes similar to those imparted upon HABP1 expression. It was also noted that along with HABP1, DeltaC.HABP1 too directly interacts with CDC 25 while DeltaN.HABP1 does not. Taken together, these data suggest that HABP1 induces morphological changes and modulates the cell cycle by interacting with proteins like CDC 25 through its N-terminal alpha-helix.  相似文献   

17.
Members of the BCL-2-related antiapoptotic family of proteins have been shown previously to regulate ATP/ADP exchange across the mitochondrial membranes and to prevent the loss of coupled mitochondrial respiration during apoptosis. We have found that BCL-2/BCL-x(L) can also improve mitochondrial oxidative phosphorylation in cells harboring pathogenic mutations in mitochondrial tRNA genes. The effect of BCL-2 overexpression in mutated cells was independent from apoptosis and was presumably associated with a modulation of adenine nucleotide exchange between mitochondria and cytosol. These results suggest that BCL-2 can regulate respiratory functions in response to mitochondrial distress by regulating the levels of adenine nucleotides.  相似文献   

18.
Proteins containing the baculovirus inhibitor of apoptosis repeats (BIR domains) have been identified in a wide range of species. BIR domain containing proteins are thought to inhibit caspases and thereby cause inhibition of apoptosis. A BIR domain containing protein has been recently identified by the Schizosaccharomyces pombe genome sequencing project. However, caspase-like proteins have not been found in yeasts, suggesting that the BIR domain containing proteins might play a fundamental role in cell regulation, in addition to their well-characterized role in inhibition of apoptosis. In this study, we have characterized Pbh1p, an S. pombe BIR domain containing protein. Construction and analysis of a null mutant in pbh1+ revealed that pbh1+ is essential for cell viability. Moreover, cells devoid of Pbh1p are defective in chromosome condensation and chromosome segregation. Thus, proper chromosome segregation requires the function of Pbh1p. Over-production of Pbh1p led to abnormalities in mitosis and cytokinesis, suggesting that the levels of Pbh1p are important for regulation of mitosis and cytokinesis.  相似文献   

19.
Depletion and multiple deletions of mitochondrial DNA (mtDNA) have been associated with a growing number of autosomal diseases that have been classified as defects of intergenomic communication. MNGIE, an autosomal recessive disorder associated with mtDNA alterations is due to mutations in thymidine phosphorylase that may cause imbalance of the mitochondrial nucleotide pool. Subsequently, mutations in the mitochondrial proteins adenine nucleotide translocator 1, Twinkle, and polymerase gamma have been found to cause autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA. Uncovering the molecular bases of intergenomic communication defects will enhance our understanding of the mechanisms responsible for maintaining mtDNA integrity.  相似文献   

20.
We have previously shown that the yeast Cathepsin D (CatD) Pep4p translocates from the vacuole to the cytosol during acetic acid-induced apoptosis and is required for efficient mitochondrial degradation, though its specific role in this process is still elusive. Here, we show that the protective role of Pep4p in acetic acid-induced apoptosis depends on its catalytic activity and is independent of the yeast voltage-dependent anion channel Por1p (which has no role on mitochondrial degradation) but dependent on AAC proteins, the yeast adenine nucleotide translocator. Our results demonstrate a differential interplay between yeast vacuolar CatD and mitochondrial proteins involved in apoptosis regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号