首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Three related mouse mammary cell lines were cultured in collagen gels and assayed for growth factor responsiveness and interaction via soluble factors. The CL-S1 cell line is nontumorigenic and grows poorly in collagen gel culture. The +SA and −SA cell lines exhibit different degrees of malignant behavior in vivo and have different growth properties in vitro. In collagen gel culture, +SA growth was stimulated by serum but not by epidermal growth factor (EGF), whereas both serum and EGF were required for optimal growth of −SA cells of early passage number as well as CL-S1 cells. −SA cells of later passage repeatedly exhibited a change so as to no longer require serum while retaining EGF responsiveness. [125I]EGF binding analyses indicated that CL-S1 cells bound EGF with less affinity than did −SA cells whereas +SA cells bound almost to ligand. When cell lines were maintained in separate collagen gels but shared the same culture medium, growth of +SA or −SA cells was slightly enhanced in the presence of CL-S1 cells and −SA cell growth was enhanced by the presence of +SA cells. Using the normal rat kidney fibroblast line NRK (clone 49F) as an indicator, serum-containing conditioned media from each cell line and from each pair of cell lines cultured in collagen gels were tested for transforming growth factor (TGF) activity. Both the −SA and CL-S1 lines tested positive for TGF-α production and possibly released a TGF-β activity. These results suggest mechanisms by which cell populations in and around tumors can modify one another’s growth characteristics. The work was supported by a grant from the American Institute for Cancer Research, by American Cancer Society Institutional grant IN-119, by funds from the Poncin Trust (Seattle-First National Bank), and by grants CA-39611 and CA46885 from the National Institutes of Health, Bethesda, MD.  相似文献   

2.
Mouse mammary epithelial cultivated on collagen gels demonstrate active spreading as the cells form monolayers. In this novel system, initiation of cell spreading is preceded by de novo synthesis of type IV collagen. The newly synthesized collagen is partitioned such that after 48 hr, approximately 24% is found in the culture medium, 35% is intracellular, and 41% is deposited in the extracellular matrix of the developing epithelium. Cultures deprived of serum failed to spread and to synthesize collagen. Proline analogues were shown to inhibit cell spreading and to suppress collagen synthesis in a dose-dependent manner. Cytochalasin D inhibition of F-actin elongation was shown to prevent cell spreading but not to suppress total collagen synthesis. During cytochalasin D treatment, inhibition of cell spreading was shown to result from failure to deposit or to maintain deposited collagen in the epithelium extracellular matrix. The data indicate that synthesis and extracellular deposition of a major basal lamina component (viz. type IV collagen) must precede and then accompany epithelial cell spreading in collagen gel culture. It is suggested that the microfilament apparatus, through some hypothetical integral membrane protein, can anchor extracellular type IV collagen, which then provides a necessary condition for cell spreading.  相似文献   

3.
Remodeling of extracellular matrix involves a number of steps including the recruitment, accumulation, and eventual apoptosis of parenchymal cells as well as the production, organization, and rearrangement of extracellular matrix produced by these cells. The culture of fibroblasts in three-dimensional gels made of type I collagen has been used as a model of tissue contraction which characterizes both wound repair and fibrosis. The current study was designed to determine the effect of initial collagen concentration on the ability of fibroblasts to contract collagen gels and on cell survival. Native type I collagen was extracted from rat tail tendons and used to prepare collagen gels with varying collagen concentrations (0.75-2.0 mg/ml). Human lung fibroblasts (HFL-1) were cast into the gels and cultured in Dulbecco modified Eagle medium with 0.1% fetal calf serum for 2 wk. The gel size, collagen content, and deoxyribonucleic acid (DNA) content were determined. Gels prepared with an initial concentration of 0.75 mg/ml contracted more rapidly and to a smaller final size than gels prepared from 2 mg/ml initial collagen concentration (final size 7.1 versus 36.4% of initial size, P < 0.01). There was no significant degradation of the collagen in the gels under either condition. Hence, the dramatically increased contraction of the lower density gels resulted in a higher final density (P < 0.01). Cell density was estimated from DNA content. In low initial density gels, the final DNA content was significantly less than that in higher initial density gels (0.73 versus 1.88 microg/gel, P < 0.05). This was accompanied by an increased percentage of apoptotic cells at day 14 (43.3 versus 34.1%, P < 0.05). If the gels were maintained in the attached state which largely prevents contraction, apoptosis was significantly reduced, suggesting that contraction rather than matrix composition was a requirement for the increased apoptosis. In summary, these findings indicate that the initial matrix composition can lead to differing outcomes during fibroblast-mediated wound contraction.  相似文献   

4.
We have altered the shape of aligned hydrated collagen gels, without substantially altering their orientation, by air-drying them on coverslips. The original wet gels had a three-dimensional shape and elicited a strong contact guidance response when used as a substratum for heart fibroblasts or nerve axons, whereas the air-dried gels were totally flattened onto the plane support and were much less effective in guiding the cells. Treatment of the dried gels with dilute acetic acid slightly restored their three-dimensional shape and slightly restored their original contact guiding property. We interpret these results as indicating that contact guidance on such oriented fibrillar matrices is a direct cellular response to the shape of the substratum.  相似文献   

5.
In order to clarify the possible involvement of the cell surface in the pathogenesis of Duchenne muscular dystrophy, we have examined the behaviour of fibroblasts cultured from Duchenne patients in hydrated collagen lattices. No differences could be found between Duchenne and normal skin fibroblasts, either after initial seeding or following prolonged culture within the collagen gel.  相似文献   

6.
Cytoskeletal proteins of the tensin family couple integrins to the actin cytoskeleton. They are found in both focal adhesions and the fibrillar adhesions formed between cells and the fibronectin matrix. There are four tensin genes which encode three large (~200 kDa) tensin isoforms (tensin 1, 2, 3) and one short isoform (cten). However, the subcellular localization and function of the individual isoforms is poorly understood. Using human foreskin fibroblasts (HFFs), and imaging on both fixed and live cells, we show that GFP‐tensin 2 is enriched in dynamic focal adhesions at the leading edge of the cell, whereas GFP‐tensin 3 translocates rearward, and is enriched in fibrillar adhesions. To investigate the possible role of tensins in cell‐matrix remodeling, we used siRNAs to knockdown each tensin isoform. We discovered that tensin 2 knockdown significantly reduced the ability of HFFs to contract 3D collagen gels, whilst no effect on fibronectin fibrillogenesis was observed. This inhibition of collagen gel contraction was associated with a substantial reduction in Rho activity, and it was reversed by depletion of DLC1, a RhoGAP that binds to tensin in focal adhesions. These findings suggest that focal adhesion‐localized tensin 2 negatively regulates DLC1 to permit Rho‐mediated actomyosin contraction and remodeling of collagen fibers. J. Cell. Biochem. 109: 808–817, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The gonadotropic regulation of granulosa cells steroidogenesis in vitro has been shown to be accompanied by cellular rounding. In this study, the possible relationship between cell shape, microtubules, and granulosa cell steroidogenesis in vitro was further explored by culturing (24 h) granulosa cells obtained from antral follicles of pregnant mare's serum gonadotropin-treated rats in either Eagles's Minimum Essential Medium alone (MEM-cells) or in collagen gels (GEL-cells) in the absence or presence of colchicine, a microtubule-depolymerizing agent previously shown to inhibit cell-spreading in vitro. Cellular morphology was assessed by electron microscopy and compared with that seen in vivo. In addition, the influence of the various culture conditions on progesterone and 20 alpha-hydroxy-pregn-4-en-3-one (20 alpha-OH-progesterone) secretion was determined by specific radioimmunoassays. Whereas the majority of granulosa cells in sections of antral follicles appeared rounded in shape, cells cultured in MEM underwent considerable spreading and assumed a variety of shapes at the end of 24 h of culture. GEL-cells, on the other hand, remained rounded and had cellular diameters only slightly larger than those observed in vivo. They also secreted more progesterone (almost 3-fold) and less 20 alpha-OH-progesterone (0.6-fold) than MEM-cells. Colchicine increased the secretion of progesterone (1.6-fold) and 20 alpha-OH-progesterone (1.8-fold) comparably in MEM-cells but had no influence on the secretion of either progestin by GEL-cells. Hence, although colchicine-stimulated progestin secretion by granulosa cell monolayers appeared to reflect increased metabolism of substrate-possibly due to a closer association between lipid droplets and mitochondria, the elevated secretion of progesterone by GEL-cells may have been largely due to a shift in the equilibrium between progesterone and its inactive 20 alpha-reduced metabolite. The high ratio of 20 alpha-OH-progesterone to progesterone secretion seen in MEM-cultured cells may be an adaptation of granulosa cell metabolism to culture as monolayers on plastic or glass surfaces. The morphology of GEL-rather than MEM-cells resembled closely that seen in vivo. This culture method may represent a more physiologic approach to the maintenance of granulosa and other steroidogenic cells in vitro and provide a more appropriate means of assessing cytoskeletal function in the regulation of steroid hormone production.  相似文献   

8.
The movement of cells through extracellular matrix (ECM) is a critical component of many normal and pathological processes in vivo. Consequently, efforts to characterize motility-associated interactions between cells and ECM have led to the development of methods to observe and quantify (assay) the movement of cells under simplified conditions in vitro. In this report, we describe a novel method (the bullseye assay) and apparatus for the concentration of cells into small, precisely sized and shaped circular disks (bullseyes) that serve as starting points for migration of cells within ECM. The same apparatus is used to form the bullseyes and position them at the center of flat disks (windows) of gelled collagen that are supported at the edges by rings of nylon mesh. Complete assemblies, each consisting of a bullseye, collagen window and nylon mesh ring, are transferred to tissue culture wells for assay of cell migration either within or on top of the collagen window. Studies of the migratory responses of three different cell types to specific cytokines demonstrated that the bullseye assay was sensitive, rapid to set up, and easy to use. In conjunction with the bullseye assay, we developed a novel annular grayscale method for quantification of cell migration from digital images. The method is easily mastered, is derived from a measurement program in the public domain, is not subjective and is more discriminative than other techniques of measurement.  相似文献   

9.
Bone extracellular matrix (ECM) is a 3D network, composed of collagen type I and a number of other macromolecules, including glycosaminoglycans (GAGs), which stimulate signaling pathways that regulate osteoblast growth and differentiation. To model the ECM of bone for tissue regenerative approaches, dense collagen/chitosan (Coll/CTS) hybrid hydrogels were developed using different proportions of CTS to mimic GAG components of the ECM. MC3T3-E1 mouse calvaria preosteoblasts were seeded within plastically compressed Coll/CTS hydrogels with solid content approaching that of native bone osteoid. Dense, cellular Coll/CTS hybrids were maintained for up to 8 weeks under either basal or osteogenic conditions. Higher CTS content significantly increased gel resistance to collagenase degradation. The incorporation of CTS to collagen gels decreased the apparent tensile modulus from 1.82 to 0.33 MPa. In contrast, the compressive modulus of Coll/CTS hybrids increased in direct proportion to CTS content exhibiting an increase from 23.50 to 55.25 kPa. CTS incorporation also led to an increase in scaffold resistance to cell-induced contraction. MC3T3-E1 viability, proliferation, and matrix remodeling capability (via matrix metalloproteinase expression) were maintained. Alkaline phosphatase activity was increased up to two-fold, and quantification of phosphate mineral deposition was significantly increased with CTS incorporation. Thus, dense Coll/CTS scaffolds provide osteoid-like models for the study of osteoblast differentiation and bone tissue engineering.  相似文献   

10.
Biomechanics and Modeling in Mechanobiology - Fatigue as a mode of failure becomes increasingly relevant with age in tissues that experience repeated fluctuations in loading. While there has been a...  相似文献   

11.
Bone remodeling is a localized process, but regulated by systemic signals such as hormones, cytokines, and mechanical loading. The mechanism by which bone cells convert these systemic signals into local signals is not completely understood. It is broadly accepted that the "prestress" in cytoskeleton of cells affects the magnitude of cellular responses to mechanical stimuli. Prestress derives from stiff cytoskeletal proteins and their connections within the cell and from cell contractility upon attaching to matrix. In an in vitro model of three-dimensional gel compaction, the relative cellular prestress levels in the same matrix environment were determined by matrix compaction rate: a greater compaction rate resulted in a higher level of prestress. In the present study, the effects of ATP on the prestress of osteoblasts were studied using mouse MC3T3-E1 cells grown in three-dimensional bioartificial tissues (BATs). ATP (> or =100 microM) reduced the compaction rate of BATs in a dose-dependent manner. ADP, 2'-(or 3')-O-(4-benzoylbenzoyl) ATP, and UTP, but not alpha,beta-methylene ATP, also reduced the compaction rate but to a lesser extent. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium did not block the effect of ATP on BAT compaction rate. These results indicate that both P2X and P2Y receptors are involved in ATP-induced reduction of BAT compaction rate. Steady fluid flow and RT-PCR results showed that ATP reduced cell attachment on type I collagen by downregulating the expression of integrin alpha(1). These results suggest a potential role for P2 receptors in matrix remodeling and repair and as a potential drug target in treatment of bone diseases.  相似文献   

12.
Combining cellular self-alignment within tethered collagen gels with stabilization through subsequent removal of interstitial fluid has yielded a new process for the fabrication of aligned cellular biomaterials. This commentary discusses the generation of engineered neural tissue for peripheral nerve repair using this combination of techniques, providing additional insight into the rationale underpinning the approach. By describing the potential benefits of using cell and matrix interactions to organize 3D hydrogels that can be stabilized to form tissue-like constructs, the article aims to highlight the potential for the approach to be used in the generation of a wider range of functional replacement tissues.  相似文献   

13.
A method for the isolation of lobules of acini from bovine mammary gland and their storage in liquid nitrogen is described. After further dissociation of freshly prepared or frozen lobules, clumps of cells are obtained which attach to collagen gels and give rise to colonies which, on morphological criteria, appear predominantly epithelial. Storage for up to 6 months did not adversely affect viability. Increase in colony area involved cell division, was more rapid in air than in 95% oxygen and was enhanced by fetal calf serum.  相似文献   

14.
Chen MY  Jeng L  Sun YL  Zhao CF  Zobitz ME  Moran SL  Amadio PC  An KN 《Biorheology》2006,43(3-4):337-345
Knowledge of the adaptation of the soft tissue to mechanical factors and biomolecules would be essential to better understand the mechanism of tendon injury and to improve the outcome of tendon repair. The responses to these factors could be different for the distinct types of cells in the tendon: cells from the tendon sheath, fibroblasts from the epitenon surface, or fibroblasts from the internal endotenon. In this study, we examined the mechanical and histological characteristics of the rate of contraction of the collagen gel seeded with epitenon and endotenon fibroblasts. The rate of contraction and the mechanical property of the contracted construct depend on the gel concentration and also the treatment of TGF-beta1.  相似文献   

15.
Bradykinin is a multifunctional mediator of inflammation believed to have a role in asthma, a disorder associated with remodeling of extracellular connective tissue. Using contraction of collagen gels as an in vitro model of wound contraction, we assessed the effects of bradykinin tissue on remodeling. Human fetal lung fibroblasts were embedded in type I collagen gels and cultured for 5 days. After release, the floating gels were cultured in the presence of bradykinin. Bradykinin significantly stimulated contraction in a concentration- and time-dependent manner. Coincubation with phosphoramidon augmented the effect of 10(-9) and 10(-8) M bradykinin. A B2 receptor antagonist attenuated the effect of bradykinin, whereas a B1 receptor antagonist had no effect, suggesting that the effect is mediated by the B2 receptor. An inhibitor of intracellular Ca2+ mobilization abolished the response; addition of EGTA to the culture medium attenuated the contraction of control gels but did not modulate the response to bradykinin. In contrast, the phospholipase C inhibitor U-73122 and the protein kinase C inhibitors staurosporine and GF-109203X attenuated the responses. These data suggest that by augmenting the contractility of fibroblasts, bradykinin may have an important role in remodeling of extracellular matrix that may result in tissue dysfunction in chronic inflammatory diseases, such as asthma.  相似文献   

16.
17.
Reprecipitated fibrils from collagen solutions assemble into aggregates often showing a remarkable twisted structure. We first observed these aggregates in collagen gels prepared to facilitate culture of epithelial cells. We verified that these structures form in the absence of cells and correspond to a process of self-assembly. Studies on reconstructed fibrils of collagen are generally based on the examination of thin specimens mounted onto coated grids prepared for electron microscopy. We rather applied the classical methods of fixation, embedding and ultramicrotomy, which allowed us to analyze the structure of these aggregates, several microns in diameter. Our gels were prepared from 2.5 mg/ml tropocollagen solutions usually chosen for cell and organ cultures. The time required to obtain twisted architectures, in these aggregates, depends on temperature and the presence of factors such as fetal calf serum proteins. Twist is observed at two different levels of organization. Microfibrils are gathered into twisted bundles which condense into cross-striated fibrils. These fibrils themselves aggregate and show a mutual twist whose orientation is left-handed as is the twist observed within each microfibril bundle. Several models of these architectures are presented. Planar twist, cylindrical twist and toroidal twist are described and their relation to the structure of certain liquid crystals is considered. Examples of orthogonal packing also have been observed. These structures obtained in vitro are very close to patterns already described in vivo in numerous collagen matrices.  相似文献   

18.
Summary During angiogenesis, the microvasculature displays both vessel remodeling and expansion under the control of both cellular and extracellular influences. We have evaluated the role of angiogenic and angiostatic molecules on angiogenesis in anin vitro model that more appropriately duplicates the cellular and extracellular components of this process. Freshly isolated microvessel fragments from rat adipose tissue (RFMF) were cultured within three-dimensional collagen I gels. These fragments were characterized at the time of isolation and were composed of vessel segments observed in the microvasculature of fatin situ (i.e., arterioles, venules, and capillaries). Fragments also exhibited characteristic ablumenally associated cells including smooth muscle cells and pericytes. Finally, fragments were encased in an extracellular matrix composed of collagen type IV and collagen type I/III. The elongation of microvascular elements was subsequently evaluated using morphologic and immunocytochemical techniques. The proliferation, migration, and elongation of cellular elements in microvessel fragments from rat adipose tissue was dependent on initial fragment density, matrix density, and required serum. Inclusion of endothelial cell growth factors to microvessel fragments from rat adipose tissue 3-D cultures resulted in the accelerated elongation of tube structures and the expression of von Willebrand factor in cells constituting these tubes. Molecules with reported angiostatic capacity (e.g., transforming growth factor and hydrocortisone) inhibited vessel tube elongation. In vitro methods have been developed to evaluate numerous mechanisms associated with angiogenesis, including endothelial cell proliferation, migration, and phenotypic modulation. Microvascular endothelial cell fragments described in this study represent anin vitro population of cells that accurately duplicate thein vivo microcirculatory elements of fat. The proliferation of cells and elongation of microvascular elements subsequently observed in three-dimensional cultures provides anin vitro model of angiogenesis. Microvascular formation in this system results from pre-existing microvessel fragments unlike tube formation observed when cultured endothelial cells are placed in three-dimensional gels. This form of tube formation from cultured endothelium is more characteristic of vasculogenesis. Thus, the formation of microvascular elements from microvessel fragments provides the opportunity to examine the mechanisms regulating angiogenesis in anin vitro system amenable to precise experimental manipulation.  相似文献   

19.
Techniques for the measurement of bromodeoxyuridine (BrdUrd) positive cells generally include either microscopic evaluation of paraffin embedded sections or measurements on cell suspensions using a fluorescent activated cell sorter. The accuracy of these measurements and their correlations can be affected by a number of technical and intrinsic tumor factors. Extrinsic parameters including degree of necrosis and tumor growth fraction are less easily analyzed in BrdUrd stained material. Retinoblastoma tumor cell cycling was prospectively studied in 11 children using in vivo and one child using in vitro BrdUrd. BrdUrd measurements were made by staining cell suspensions or sections of paraffin embedded tumor and analyzing by microscopy. Approximately 14% of viable cells were in the synthesis-phase of the cell cycle. The correlation between BrdUrd in cell suspensions and BrdUrd in paraffin embedded sections did not reach significance (r = 0.48). DNA analysis of these tumors was also performed using flow cytometry. Nine tumors were found to have a normal diploid DNA content, one had a G1 peak below the diploid control, two had a G1 peak above the diploid control, and one had two G1 peaks (a diploid and a hyperdiploid peak). There was no correlation between abnormal DNA content and the percent of cells in synthesis.  相似文献   

20.
Leukocytes must migrate through tissues to fulfill their role in the immune response, but direct methods for observing and quantifying cell motility have mostly been limited to migration on two-dimensional surfaces. We have now developed methods for examining neutrophil movement in a three-dimensional gel containing 0.1 to 0.7 mg/ml rat tail tendon collagen. Neutrophil-populated collagen gels were formed within flat glass capillary tubes, permitting direct observation with light microscopy. By following the tracks of individual cells over a 13.5-min observation period and comparing them to a stochastic model of cell movement, we quantified cell speed within a given gel by estimating a random motility coefficient (mu) and persistence time (P). The random motility coefficient changed significantly with collagen concentration in the gel, varying from 1.6 to 13.3 x 10(-9) cm2/s, with the maximum occurring at a collagen gel concentration of 0.3 mg/ml. The methods described may be useful for studying tissue dynamics and for evaluating the mechanism of cell movement in three-dimensional gels of extracellular matrix (ECM) molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号