首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress is involved in many biological systems, among which are fruit ripening and senescence. Free radicals play an important role in senescence and ageing processes. Plants have evolved antioxidative strategies in which superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) are the most efficient antioxidant enzymes, influencing patterns of fruit ripening. Variations in total SOD and CAT activities were determined at regular intervals during ripening and senescence in on‐tree and cold‐stored apple fruits of the cultivars Fuji and Golden Delicious. In all fruits, internal ethylene concentration was also measured. The results suggest that the onset of ripening, signalled by ethylene burst, is closely related to SOD and CAT activities. In on‐tree fruits the climacteric peak in ethylene was associated with the peaks of SOD and CAT activity in both cultivars. Quite different results were obtained in cold‐stored fruits: Ethylene concentration increased in both cultivars during the storage. CAT activity doubled in both cultivars. SOD activity decreased in Golden Delicious and peaked in Fuji.  相似文献   

2.
3.
The treatment of apple and banana fruits with 2-CEFA and ethacyde induced the production of ethylene and accelerated the ripening and accumulation of ACC in apple fruits. Inhibitors AOA, AVG, and CoCl2 acted at the different steps of ethylene biosynthesis, inhibited the physiological aging process and increased storage longevity. Treatment with astaxantine and BOA delayed the pick of ethylene production by fruits. The content of PGIP was correlated with intensity of ethylene production. The infection of fruits with phytopathogenic microorganisms lowered as the result of the inhibition of pathogen PG. The dynamics of PGIP activity in fruits suggests its important role in the processes of ripening.  相似文献   

4.
Coffee quality is strongly influenced by a great number of factors, among which the fruit ripening stage at harvest time has a major influence on this feature. Studies comprising ethylene production and the regulation of ethylene biosynthesis genes during the ripening process indicate that ethylene plays an important role on coffee fruit ripening. Coffee early cultivars usually show a more uniform ripening process although little is known about the genetic factors that promote the earliness of ripening. Thus, in order to better understand the physiological and genetic factors involved in the regulation of ripening time, and consequently ripening uniformity, this study aimed to analyze ethylene and respiration patterns during coffee ripening, as well as to analyze ACC oxidase, an ethylene biosynthesis enzyme, gene expression, in fruits of early (Catucaí 785-15) and late (Acauã) coffee cultivars. Coffee fruits were harvested monthly from 124 days after flowering (end of February), until complete maturation (end of June). Dry matter, moisture content, color, respiratory rate and ethylene production analysis were performed. In silico analysis identified a coffee ACC oxidase gene (CaACO-like) and its expression was analyzed by real-time PCR. Dry matter and relative water content constantly increased and gradually decreased, respectively, during fruit ripening, and the color analysis enabled the observation of the earliness in the ripening process displayed by Catucaí 785-15 and its higher fruit ripening uniformity. The results obtained from the CaACO-like expression analysis and respiration and ethylene analysis suggest that the differences in ripening behavior between the two coffee cultivars analyzed in this study may be related to the differences in their capacity to produce ethylene, with fruits of Catucaí 785-15 and Acauã showing a typical and an attenuated climacteric phase, respectively, which may have lead to differences in their ripening time and uniformity.  相似文献   

5.
Rapid ripening of mango fruit limits its distribution to distant markets. To better understand and perhaps manipulate this process, we investigated the role of plant hormones in modulating climacteric ripening of ??Kensington Pride?? mango fruits. Changes in endogenous levels of brassinosteroids (BRs), abscisic acid (ABA), indole-3-acetic acid (IAA), and ethylene and the respiration rate, pulp firmness, and skin color were determined at 2-day intervals during an 8-day ripening period at ambient temperature (21?±?1°C). We also investigated the effects of exogenously applied epibrassinolide (Epi-BL), (+)-cis, trans-abscisic acid (ABA), and an inhibitor of ABA biosynthesis, nordihydroguaiaretic acid (NDGA), on fruit-ripening parameters such as respiration, ethylene production, fruit softening, and color. Climacteric ethylene production and the respiration peak occurred on the fourth day of ripening. Castasterone and brassinolide were present in only trace amounts in fruit pulp throughout the ripening period. However, the exogenous application of Epi-BL (45 and 60?ng?g?1 FW) advanced the onset of the climacteric peaks of ethylene production and respiration rate by 2 and 1?day, respectively, and accelerated fruit color development and softening during the fruit-ripening period. The endogenous level of ABA rose during the climacteric rise stage on the second day of ripening and peaked on the fourth day of ripening. Exogenous ABA promoted fruit color development and softening during ripening compared with the control and the trend was reversed in NDGA-treated fruit. The endogenous IAA level in the fruit pulp was higher during the preclimacteric minimum stage and declined during the climacteric and postclimacteric stages. We speculate that higher levels of endogenous IAA in fruit pulp during the preclimacteric stage and the accumulation of ABA prior to the climacteric stage might switch on ethylene production that triggers fruit ripening. Whilst exogenous Epi-BL promoted fruit ripening, endogenous measurements suggest that changes in BRs levels are unlikely to modulate mango fruit ripening.  相似文献   

6.
7.
8.
9.
Ethylene and Fruit Ripening   总被引:5,自引:0,他引:5  
  相似文献   

10.
Mango (Mangifera indica L.) is known as “king of fruits” in India. More than 1000 mango varieties are currently cultivated in Indian Sub-continent. However most of the orchards of mango are infected with mango malformation disease (MMD), which every year leads to huge losses in yield of mango in range of 40 to 80?% in India. Till date there is no effective control measure against MMD. Floral Malformation, in contrast to vegetative one, is very virulent and can cause the loss of the entire crop. In the present study, six mango cultivars commonly grown in Gujarat, and all infected with various degrees of MMD were taken for studying their molecular relatedness, pathogen load and defense responsiveness via gene expression to rate whether hybrids or landrace among mango cultivars are better equipped to fight MMD. Genetic diversity analysis was performed using 30 SSR markers in order to bring out clustering pattern among the six cultivars belonging to orchards of Balisana and Prantij, Gujarat. The diversity analysis gave clues to the existence of wide genetic base among the six cultivars. Fungal load studies using Real Time PCR lead to the ranking of cultivars based on maximum and minimum infection load of pathogen. Absolute quantitation studies found that cultivars like Totapuri, Neelam and Amrapali were more resistant to MMD than highly popular cultivars like Kesar. The six mango cultivars were further quantified for pathogen responsiveness with 21 defense responsive genes using Real Time PCR. Among the 21 genes selected for the study, 11 genes were directly part of defense responsive pathways like Phenyl propanoid pathway and jasmonic acid pathway. Gene expression studies aided in ranking mango hybrid like Amrapali having better systemic acquired resistance response as 11 defense responsive genes were found upregulated in this cultivar followed by landrace Neelam which is in fact a parental line of Amrapali. If MMD remains unchecked it may lead to evolution of more virulent strains of Fusarium; propelling devastating consequences in mango cultivation. Hence mango hybrids developed via molecular and expressional screening will fasten process of establishment of resistant mango cultivars.  相似文献   

11.
The modern concept of the hormonal regulation of fruit set, growth, maturation, and ripening is considered. Pollination and fertilization induce ovule activation by surmounting the blocking action of ethylene and ABA to be manifested in auxin accumulation. Active fruit growth by pericarp cell division and elongation is due to the syntheses of auxin in the developing seed and of gibberellins in the pericarp. In climacteric fleshy fruits, the maturation is controlled by ethylene via so-called System 1 combining the possibilities of autoinhibition and autocatalysis by ethylene of its own biosynthesis. Transition of tomato fruits from maturation to ripening is characterized by highly active synthesis of ethylene and its receptors due to the functioning of regulatory System 2 resulting in the up-regulation of much greater number of ethylene-inducible genes. In peach fruits, the hormonal regulation of ripening includes also an active auxin involvement in the ethylene biosynthesis, which is combined with the ethylene-induced expression of genes encoding both auxin biosynthesis and the response to auxin. Ethylene induces the expression of genes responsible for the fruit softening, its taste, color, and flavor. Nonclimacteric fleshy fruits produce very small amounts of ethylene; its evolution increases only by the very end of ripening and can be described by a reduced System 1. The ripening of nonclimacteric fruits only weakly depends on ethylene but is stimulated by abscisic acid.  相似文献   

12.
To elucidate the role of ethylene in the production of flavor compounds by tomato fruits, wild-type tomato (Lycopersicon esculentum L., cv. Lichun) and its transgenic antisense LeACS2 line with suppressed ethylene biosynthesis were used. The metabolism of individual sugars was ethylene-independent. However, citric acid and malic acid were under ethylene regulation. The content of these acids was higher in transgenic tomato fruits and returned to normal level after transgenic fruits were treated with ethylene. Because most of amino acids, which are important precursors of volatiles, were shown to be correlated with ethylene, we surmise that amino acid-related aroma volatiles were also affected by ethylene. Headspace analysis of volatiles showed a significant accumulation of aldehydes in wild-type tomato fruits during fruit ripening and showed a dramatic decrease in most aroma volatiles in transgenic tomato fruits as compared with wild-type fruits. The production of hexanal, hexanol, trans-2-heptenal, cis-3-hexanol, and carotenoid-related volatiles, except β-damascenone and β-ionone, was inhibited by suppression of ethylene biosynthesis. No remarkable differences were observed in the concentrations of cis-3-hexenal and trans-2-hexenal between transgenic and wild-type tomato fruits, indicating these two volatiles to be independent of ethylene. Thus, there are various regulation patterns of flavor profiles in tomato fruits by ethylene. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 1, pp. 92–101. The text was submitted by the authors in English. Both authors equally contributed to this work.  相似文献   

13.
In all cultivars the force required to harvest fruit declined during ripening. The fruit retention strength (FRS) of ripe fruit varied between cultivars with ‘Ashton Cross’ and ‘Chehalem’ being easier to remove than ‘Bedford Giant’ or ‘Oregon Thornless’. The cultivars ‘Ashton Cross’ and ‘Oregon Thornless’ showed no increase in ethylene production during fruit ripening whereas ‘Bedford Giant’ and ‘Chehalem’ had increased rates of ethylene production (EPR) in the ripe fruit. Exogenous ethylene accelerated abscission, ethylene production and pigment changes in ‘Ashton Cross’ fruit at all stages of development. 1-amino-cyclopropane-1-carboxylic acid (ACC) supplied to fruit at all stages of development was converted to ethylene at levels in excess of those found naturally. The differences between cultivars are discussed with reference to the role of ethylene in both machine harvesting and post-harvest storage of blackberry fruit.  相似文献   

14.
A combined analysis of physiological traits, volatile composition and sensory evaluation of aromatic quality was conducted on the ‘Algerie’ and ‘Golden Nuggett’ cultivars at six maturity stages, covering colour breaking to complete ripening. The main difference between cultivars during ripening was aromatic character; organoleptic differences between cultivars were assessed by a taste panel and could be explained by the volatile profile at harvest, and more specifically by those volatiles showing a rapid increase as fruits fully ripened. Among the 121 volatile compounds identified in loquat fruits, 2-methyl butanoic acid was the only cultivar-specific VOC, detected only in ‘Algerie’, while the levels of other common VOCs also contributed to differentiation between cultivars. A correlation analysis ran between volatile compounds levels and loquat aroma and flavour intensity revealed that 1,2-dimethoxy-4-(2-methoxyethenyl)benzene, elemicin, (Z)-2-hexen-1-ol, methyl 2-methylbutanoate, methyl 3,4,5-trimethoxybenzoate, cis-geranylacetone, (E)-methyl cinnamate, (E)-2-decenal, cis-edulan and 1-hydroxycyclohexyl phenyl ketone were volatiles which could importantly contribute to loquat’s aromatic character, some of which are reported here for the first time as key volatiles in aromatic quality. The correlations among the physiological parameters, the volatile compounds and physiological traits, and the parallelisms between precursors and volatile product, are discussed as they offer clues about loquat quality-associated metabolic changes during ripening.  相似文献   

15.
Mango (Mangifera indica L. cv. Tainong) fruits were harvested at the green-mature stage in Hainan and air-freighted to the laboratory at Peking. The fruits were treated with either 1 μl l−1 1-MCP or 5 μl l−1 ethylene for 24 h and stored at 20°C for up to 16 days. 1-MCP maintained fruit firmness, whereas exogenous ethylene decreased fruit firmness. Exogenous ethylene accelerated the increase in ethylene and 1-aminocyclopropane-1-carboxylate (ACC) oxidase, whereas 1-MCP reduced both. Exogenous ethylene stimulated and 1-MCP inhibited the production of H2O2 of mango fruit during storage. Ascorbic acid was maintained at a high concentration in 1-MCP-treated fruit but was low in ethylene-treated fruit. 1-MCP inhibited activities of antioxidant enzymes including catalase, superoxide dismutase and ascorbate peroxidase. These results suggest that 1-MCP could play a positive role in regulating the activated oxygen metabolism balance. Baogang Wang and Jianhui Wang contributed equally to this work.  相似文献   

16.
Fruit flies (Diptera: Tephritidae) are dipteran insects that cause high losses of fruits and vegetables in the tropical and subtropical regions of the world. As quarantine pests, fruit flies affect export markets because trade regulations hamper export of fruits from areas with occurrence of fruit flies. We compared the effectiveness of Oecophylla longinoda with the insecticide; imidacloprid for the control of Bactrocera dorsalis in a 6-year-old orchard of mango cultivar ‘Apple’. Mango samples at different developmental stages were collected between September and November in 2012 and between November 2013 and January 2014 at a three-week interval between sampling dates. Every fruit was cultured in a separate individual plastic container containing approximately 500?g sieved sterilised sand. Three weeks later, larvae and pupae were sieved from sand and counted. In both years, significantly higher (P?<?.0001) incidences and infestation rates were recorded in the control plots when compared to the trees protected with insecticides and O. longinoda. Incidences and infestation rates did not differ significantly (P?>?.05) between insecticide and weaver ants protected fruits, implying that O. longinoda was as effective as imidacloprid in suppressing the population of fruit flies. Peak fruit fly incidences and infestation rates coincided with the ripening stage of mango fruits. Our results have shown that the incidences and infestation rates on incubated mango fruits were lowest in the O. longinoda and the imidacloprid protected trees. Thus, O. longinoda is an effective bio-control agent that could be exploited to serve as a vital Integrated Pest Management component on mango orchards.  相似文献   

17.
18.
19.
唐友林  周玉婵  杨谦   《广西植物》1996,(4):375-378
52±1℃热杀菌剂苯来特或 TBZ等溶液浸果处理,对“留香”和“紫花”品种杧果采后炭疽病和蒂腐病有显著控制效果,改善果实外观,延长贮藏寿命,提高贮藏品质,减少病害的腐烂损失 60%,获得在常温下贮藏 18d的采后寿命和 100%的商品率。在热杀菌剂处理后,贮藏于低温13±1℃下的 杧果,显著减慢果皮转黄和后熟软化,降低呼吸速率,延长贮藏寿命2~3周以上,并且,显著减少病害和腐烂损失,有利于提高采后杧果的商品率和远途运输及销售。  相似文献   

20.
Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of ‘Jonagold’ apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1‐Methylcyclopropene (1‐MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1‐MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1‐MCP treated apples, whereas 1‐aminocyclopropane‐1‐carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1‐MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号