共查询到3条相似文献,搜索用时 0 毫秒
1.
Konieczny R Obert B Bleho J Novák O Heym C Tuleja M Müller J Strnad M Menzel D Samaj J 《Journal of plant physiology》2011,168(7):722-729
Stable transformation of Mesembryanthemum crystallinum L. (common ice plant) with a green fluorescent protein (GFP) construct targeted to the endoplasmic reticulum was obtained. Seven and fourteen days after germination seedlings were infected with Agrobacterium rhizogenes strain ARqua1 either by direct coating of the cut radicles with bacteria growing on solid medium or by immersion of the cut surface in bacterial suspension at different optical densities. Both methods of infection resulted in production of GFP-positive roots with a frequency ranging from 6 to 20% according to the age of the explants and the application procedure. The green fluorescing roots displayed the typical hairy root phenotype and were easily maintained in liquid medium without growth regulators for over 2 years. Stable expression of the transgene in the roots was confirmed by polymerase chain reaction (PCR), immunoblotting and the capacity of roots to grow and produce callus on kanamycin-enriched medium. Nineteen endogenous cytokinins were determined in transgenic and non-transformed roots. The results revealed significantly lower levels of the free bases of isopentenyladenine, dihydrozeatin, cis- and trans-zeatin, as well as a conspicuous decline in concentrations of the corresponding nucleosides and most nucleotides in transgenic roots compared to the wild type. Comparison of the cytokinin profiles in transgenic and non-transformed roots suggested that transformation by A. rhizogenes disturbed cytokinin metabolism during the early steps of biosynthesis. Calli obtained from transformed roots were GFP-positive and remained non-regenerative or displayed high rhizogenic potential depending on the auxin/cytokinin ratio in the medium. Calli and callus-derived roots showed a strong GFP signal for over 2 years. 相似文献
2.
Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery 总被引:1,自引:0,他引:1
Mária A. Deli 《生物化学与生物物理学报:生物膜》2009,1788(4):892-910
The epithelial and endothelial barriers of the human body are major obstacles for drug delivery to the systemic circulation and to organs with unique environment and homeostasis, like the central nervous system. Several transport routes exist in these barriers, which potentially can be exploited for enhancing drug permeability. Beside the transcellular pathways via transporters, adsorptive and receptor-mediated transcytosis, the paracellular flux for cells and molecules is very limited. While lipophilic molecules can diffuse across the cellular plasma membranes, the junctional complexes restrict or completely block the free passage of hydrophilic molecules through the paracellular clefts. Absorption or permeability enhancers developed in the last 40 years for modifying intercellular junctions and paracellular permeability have unspecific mode of action and the effective and toxic doses are very close. Recent advances in barrier research led to the discovery of an increasing number of integral membrane, adaptor, regulator and signalling proteins in tight and adherens junctions. New tight junction modulators are under development, which can directly target tight or adherens junction proteins, the signalling pathways regulating junctional function, or tight junction associated lipid raft microdomains. Modulators acting directly on tight junctions include peptides derived from zonula occludens toxin, or Clostridium perfringens enterotoxin, peptides selected by phage display that bind to integral membrane tight junction proteins, and lipid modulators. They can reversibly increase paracellular transport and drug delivery with less toxicity than previous absorption enhancers, and have a potential to be used as pharmaceutical excipients to improve drug delivery across epithelial barriers and the blood-brain barrier. 相似文献