首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cylindrospermopsin (CYN) is a potent inhibitor of protein synthesis produced by a number of cyanobacterial species, the most common being Cylindrospermopsis raciborskii. CYN contains a uracil moiety attached to a sulphated guanidino moiety, suggesting that it may have carcinogenic activity. This report describes the use of the WIL2-NS lymphoblastoid cell-line in the well-validated cytokinesis-block micronucleus (CBMN) assay to test this hypothesis. Centromeres (CENs) were identified in micronuclei (MNi) of binucleated cells (BNCs) by fluorescent in situ hybridisation of alpha centromeric DNA sequence repeats. The results indicate that CYN induced a significant increase in the frequency of MNi in BNCs exposed to 6 and 10microg/ml, and a significant increase in CEN-positive MNi at all concentrations of CYN tested (1, 3, 6, and 10microg/ml). However, despite this apparently greater sensitivity of WIL2-NS cells to induction of CEN-positive MNi at low CYN concentrations, at the higher concentrations the magnitude of the increase in CEN-positive MNi did not account for the greater increase in MNi in BNCs, indicating that both CEN-positive and CEN-negative MNi were induced. This suggests that CYN acts to induce cytogenetic damage via two mechanisms, one at the level of the DNA to induce strand breaks, the other at the level of kinetochore/spindle function to induce loss of whole chromosomes (aneuploidy). C. raciborskii occurs in a number of human drinking water sources worldwide and so these findings may have important public health implications.  相似文献   

2.
Sublethal effects in the aquatic snail Melanoides tuberculata were examined during exposure to whole cell extracts of Cylindrospermopsis raciborskii and live C. raciborskii cultures, containing varying concentrations of algal cells, cellular debris, and the blue-green algal toxin, cylindrospermopsin (CYN). Exposure to whole cell extracts or live algal cultures did not result in significant changes in adult snail behaviour or relative growth rates. However, clear changes in the number of hatchlings released from parent snails were observed. Exposure to whole cell extracts containing ≥200 μg L−1 extracellular CYN resulted in an increase in the number of hatchlings. In contrast, decreases in hatchling number were recorded from treatments containing ≥200 μg L−1 CYN during exposures to live C. raciborskii cultures, compared with controls. This suggests that CYN may be more toxic to grazing invertebrates if present in the intracellular form. Since CYN is a protein synthesis inhibitor, it is possible that CYN may be especially toxic to rapidly developing tissues such as snail embryos. This may also explain the lack of effects observed in adult snails.  相似文献   

3.
He W  He P  Wang A  Xia T  Xu B  Chen X 《Mutation research》2008,649(1-2):62-70
Polybrominated diphenyl ethers (PBDEs) are an important class of flame retardants. Because of their detection in human breast milk and structural similarity to polychlorinated biphenyls (PCBs), concern has been raised about their potential toxicity, particularly neurotoxic effects in newborns and children. The aim of the current study was to evaluate the cytotoxic and genotoxic effects of 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) in human neuroblastoma (SH-SY5Y) cells in vitro. SH-SY5Y cells were incubated with different concentrations of PBDE-47 (1, 2, 4, 8 microg/ml) for 24 h, and a set of bioassays were conducted to measure: cell viability, cell proliferation (nuclear division index, NDI), lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) formation, cell apoptosis, and DNA breakage and cytogenetic damage. The data showed that PBDE-47 inhibited cell viability, increased LDH leakage, and induced cell apoptosis. All significant effects were observed at concentrations of 4 microg/ml and above (P<0.05). After 24 h exposure, a concentration-dependent increase in ROS formation was observed, and there were obviously increase in comparison to the control at concentrations as low as 2 microg/ml PBDE-47. Log-transformed Olive Tail Moment (OTM) were significantly increased compared with the control at various PBDE-47 concentrations (P<0.05), while a significant increase in the percentage of DNA in the tail was only observed at 8 microg/ml PBDE-47 (P<0.05). PBDE-47 caused a concentration-dependent decrease in NDI, and concentration-dependent increases in chromosome abnormalities as measured by total Micronuclei (MNi)/1000 binucleate cells (BNCs), micronucleated binucleate cells (MNBNCs)/1000 BNCs, and nucleoplasmic bridges (NPBs)/1000 BNCs. The results indicate that PBDE-47 is cytotoxic and genotoxic in SH-SY5Y cells in vitro.  相似文献   

4.
The biological role of cyanobacteria secondary metabolites is relatively unknown although several possible hypotheses have been discussed. In the following study the effect of cylindrospermopsin (CYN) and metabolites of non-CYN producing Cylindrospermopsis raciborskii strain on growth, alkaline phosphatase (ALP) activity and microcystin-LR (MC-LR) production in Microcystis aeruginosa was evaluated. Higher concentrations of CYN (10 and 50 μg L−1) induced toxicity effects demonstrated by significant growth inhibition and M. aeruginosa cell necrosis. Lower concentrations of CYN (1 and 5 μg L−1) slightly decreased growth rates but significantly up-regulated ALP activity. Moreover, under all studied CYN concentrations MC-LR production strongly decreased. Spent C. raciborskii medium mimicked the CYN action by inducing strong inhibition of M. aeruginosa growth and MC-LR production and through up-regulation of ALP activity. On the other hand, spent M. aeruginosa medium did not affect C. raciborskii growth and no alterations in ALP activity were observed. Co-culturing of these two species resulted in an increase of C. raciborskii contribution at the expense of M. aeruginosa. From the results we conclude that CYN can be involved in interspecific competition in cyanobacteria and that non-CYN producing C. raciborskii strains may produce a hitherto unknown bioactive compound(s) which can mimic CYN action.  相似文献   

5.
6.
WIL2-NS and TK6 are two distinct human lymphoblast cell lines derived from a single male donor. WIL2-NS cells are significantly more resistant to the cytotoxic effects of X-irradiation but considerably more sensitive to induced mutation. In an effort to determine the mechanistic basis for these differences, we analyzed the physical structures of thymidine kinase (tk)-deficient mutants isolated after X-ray treatment of tk heterozygotes derived from TK6 and the more mutable WIL2-NS. Southern analysis showed that while 84% of TK6-derived mutants had arisen by loss of heterozygosity (LOH), all 106 mutants from WIL2-NS derivatives arose with LOH at tk and all but one showed LOH at other linked loci on chromosome 17. We adapted a fluorescence in situ hybridization technique to distinguish between LOH due to deletion, which results in retention of only one tk allele, and LOH due to a mechanism involving the homologous chromosome (e.g., recombination), which results in the retention of two alleles. Among the LOH mutants derived that were analyzed in this way, 9 of 26 from WIL2-NS and 11 of 17 from TK6 cell lines arose by deletion. The remaining mutants retained two copies of the tk gene and thus arose by a mechanism involving the homologous allele. Since many of these mutants arising by a homologous mechanism retained partial heterozygosity of chromosome 17, they must have arisen by recombination or gene conversion, and not chromosome loss and reduplication. Finally, the recombinational capacities of WIL2-NS and TK6 were compared in transfection assays with plasmid recombination substrates. Intermolecular recombination frequencies were greater in WIL2-NS than in TK6. These data are consistent with a model suggesting that a recombinational repair system is functioning at a higher level in WIL2-NS than in TK6; the greater mutability of the tk locus in WIL2-NS results from more frequent inter- and intramolecular recombination events.  相似文献   

7.
The influence of light and temperature on the cylindrospermopsin (CYN) production of two Aphanizomenon flos-aquae strains, isolated from North-eastern German lakes, was investigated with semi-continuously growing cultures. A light gradient from 10 to 60 μE m−2 s−1 in combination with temperatures of 16, 20, and 25 °C was tested.CYN concentrations varied by a maximum factor of 2.7 in strain 10E9 with a significant decrease with increasing temperature. Strain 22D11 showed less pronounced changes, i.e. by a factor of 1.6, and without clear relationship to temperature.Reaction patterns of CYN production to changing light intensities are different at different temperatures. In both strains CYN concentrations increase significantly at 20 °C between 10 and 60 μE m−2 s−1, whereas they decrease significantly at 25 °C in the same light gradient. The amount of synthesised CYN is not reflected by growth rates of the strains in a uniform manner. Nonetheless several temperature–light combinations which constitute physiological stress seem to trigger CYN production and particularly CYN release from cells. The lowest growth rate observed at 16 °C and 60 μE m−2 s−1 of strain 22D11 may reflect photoinhibition due to the lower temperature and related limited CO2-fixation. Under these conditions, extracellular CYN concentrations increased to 58% of total CYN, while the share of extracellular CYN of all other light and temperature regimes was 11–26%. From the results and the experimental design we conclude an active release of the toxin into medium to be more likely than mere leakage from cells.  相似文献   

8.
Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck is a common mat-forming benthic cyanobacterium from freshwater habitats. We found that two populations from southeast Queensland (Australia) produce the potent cyanotoxin cylindrospermopsin (CYN) and its analogue, deoxy-cylindrospermopsin (deoxy-CYN). The highest concentrations in environmental samples were 20 and 550 μg g−1 dry weight for CYN and deoxy-CYN, respectively. A sub-sample maintained in culture for over 16 months yielded concentrations of 33 and 308 μg g−1 dry weight for CYN and deoxy-CYN, respectively. The concentration of deoxy-CYN in L. wollei was 10–300 times higher than CYN, suggesting that, unlike many other CYN-producing cyanobacteria, the primary compound produced by L. wollei is deoxy-CYN. The production of CYN and deoxy-CYN by L. wollei represents a potential human health risk and an additional source of these toxins in freshwaters. This is the first report of the production of CYN and deoxy-CYN by L. wollei or any species of the Oscillatoriales.  相似文献   

9.
Zinc (Zn) is an essential cofactor required by numerous enzymes that are essential for cell metabolism and the maintenance of DNA integrity. We investigated the effect of Zn deficiency or excess on genomic instability events and determined the optimal concentration of two Zn compounds that minimize DNA-damage events. The effects of Zn sulphate (ZnSO(4)) and Zn carnosine (ZnC) on cell proliferation were investigated in the WIL2-NS human lymphoblastoid cell line. DNA damage was determined by the use of both the comet assay and the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. Zn-deficient medium (0μM) was produced using Chelex treatment, and the two Zn compounds (i.e. ZnSO(4) and ZnC) were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0μM. Results from an MTT assay showed that cell growth and viability were decreased in Zn-depleted cells (0μM) as well as at 32μM and 100μM for both Zn compounds (P<0.0001). DNA strand-breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P<0.05). The CBMN-Cyt assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P<0.0001). Elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were induced in Zn-depleted cells (P<0.0001), whereas genome damage was reduced in supplemented cultures for both Zn compounds at 4μM and 16μM, possibly suggesting that these concentrations may be optimal for genome stability. The potential protective effect of ZnSO(4) and ZnC was also investigated following exposure to 1.0Gy γ-radiation. Culture in medium containing these compounds at 4-32μM prior to irradiation displayed significantly reduced frequencies of MNi, NPBs and NBuds compared with cells maintained in 0μM medium (P<0.0001). Expression of γ-H2AX and 8-oxoguanine glycosylase measured by western blotting was increased in Zn-depleted cells. These results suggest that Zn plays important role in genomic stability and that the optimal Zn concentration-range for prevention of DNA damage and cytotoxicity in vitro lies between 4 and 16μM.  相似文献   

10.
We investigated chromosomal damage caused by a typical flavonoid, quercetin, and its two conjugates, quercetin-3-O-sulfate and isorhamnetin, and their protective effects against chromosomal damage induced by H2O2. The chromosomal damage was detected by the cytokinesis-block micronucleus (CBMN) assay using a lymphoblastoid cell line, WIL2-NS. We found that quercetin itself induced chromosomal damage at 10 microM, but quercetin-3-O-sulfate and isorhamnetin did not induce damage up to 30 microM. In the medium used for the CBMN assay, quercetin (at 100 microM) generated a high concentration of H2O2, but the two conjugates did not at the same concentration. On the other hand, pretreatment with quercetin (at 1 microM), quercetin-3-O-sulfate (at 10 microM), and isorhamnetin (at 5 microM) prevented H2O2-induced chromosomal damage to WIL2-NS cells. These findings suggest that the induction and prevention of H2O2-induced chromosomal damage are different between quercetin and its metabolites.  相似文献   

11.
The role of dissolved inorganic phosphorus (DIP) in promoting dominance of the toxic nitrogen (N)‐fixing cyanobacterium Cylindrospermopsis raciborskii (Wo?osz.) Seenayya et Subba Raju was examined in a subtropical water reservoir, Lake Samsonvale (=North Pine reservoir). A novel in situ bioassay approach, using dialysis tubing rather than bottles or bags, was used to determine the change in C. raciborskii dominance with daily additions of DIP. A statistically significant increase in dominance of C. raciborskii was observed when DIP was added at two concentrations (0.32 μM and 16 μM) in a daily pulse over a 4 d period in three separate experiments in the summer of 2006/2007. There was an increase in both C. raciborskii cell concentrations and biovolume in two DIP treatments, but not in the ammoniacal N + DIP treatment. In addition, overall phytoplankton cell concentrations increased with DIP addition, indicating that Lake Samsonvale was DIP limited at the time of experiments. Given the bioassay response, it is likely that dominance of C. raciborskii could increase in Lake Samsonvale with periodic injections of DIP such as inflow events.  相似文献   

12.
Cylindrospermopsin (CYN) is a cyanotoxin that has raised serious concerns about public health in many parts of the world. It can bioaccumulate and affect the health of aquatic organisms, but despite this, few studies have been conducted on CYN uptake and clearance in fish. In this paper, the authors evaluate the uptake and clearance of CYN in the muscle tissue and viscera of juvenile tilapia (Oreochromis niloticus) after exposure to aqueous extracts and whole cells of Cylindrospermopsis raciborskii (CYN-producer). CYN blended with commercial fish food, and three experiments were conducted. In the first trial, fish food, and aqueous extracts containing 0.31 μg CYN g−1 of food per day, was administered to tilapia for 15 days. In the second trial, fish were provided food and intact cells (5.4 μg CYN g−1 of food per day) for 15 days. In the last trial, they were provided fish food and aqueous extracts (0.8 μg CYN g−1 of food per day) for 12 days, and for the next 10 days, the animals were fed food without toxic cell extracts (to simulate a clearance period). The concentration of CYN in muscle tissue and viscera was analysed using ELISA. In the case of juvenile tilapia, the presence of CYN was higher in viscera than in muscle tissue, and the toxin remained in the tissues even after 10 days without the addition of contaminated food. The results suggest that tilapia represents a potential source of CYN transfer through the food web, and this shows the need for a continuous monitoring of this compound in organisms that are used for human and animal consumption.  相似文献   

13.
The Cylindrospermopsis raciborskii population from Brazilian freshwater is known to produce saxitoxin derivatives (STX), while cylindrospermopsin (CYN), which is commonly detected in isolates from Australia and Asia continents, has thus far not been detected in South American strains. However, during the investigation for the presence of cyrA, cyrB, cyrC and cyrJ CYN synthetase genes in the genomes of four laboratory-cultured C. raciborskii Brazilian strains, the almost complete cyrA gene sequences were obtained for all strains, while cyrB and cyrC gene fragments were observed in two strains. These nucleotide sequences were translated into amino acids, and the predicted protein functions and domains confirmed their identity as CYN synthetase genes. Attempts to PCR amplify cyrJ gene fragments from the four strains were unsuccessful. Phylogenetic analysis grouped the nucleotide sequences together with their homologues found in known CYN synthetase clusters of C. raciborskii strains with high bootstrap support. In addition, fragments of sxtA, sxtB and sxtI genes involved in STX production were also obtained. Extensive LC-MS analyses were unable to detect CYN in the cultured strains, whereas the production of STX and its analogues was confirmed in CENA302, CENA305 and T3. To our knowledge, this is the first study reporting the presence of cyr genes in South American strains of C. raciborskii and the presence of sxt and cyr genes in a single C. raciborskii strain. This discovery suggests a shift in the type of cyanotoxin production over time of South American strains of C. raciborskii and contributes to the reconstruction of the evolutionary history and diversification of cyanobacterial toxins.  相似文献   

14.
Cylindrospermopsis raciborskii is a global invasive cyanobacterium, with some ecotypes (i.e. strains) producing the toxin cylindrospermopsin, CYN. Multiple ecotypes can co-exist, complicating prediction of toxin concentrations based on cell concentrations. This study examined the growth response and toxin production of three Australian ecotypes of C. raciborskii, two toxic (CS-505, CS-506) and one non-toxic (CS-510), to a range of nitrogen (N) and phosphorus (P) concentrations. CYN cell quota was constant under all N:P ratios and concentration conditions, indicative of a constitutive response, yet the CYN cell quota was 6-fold higher in CS-506 compared to CS-505. The ecotypes differed in response to dissolved N depletion: there was a 4-fold difference in the number of cells heterocyst mL−1 between CS-505 and CS-510, while CS-506 did not produce any heterocysts and was unable to grow in N deplete conditions. Growth rates were lower for all ecotypes as [P] increased, indicative of a species with a strategy of P storage rather than increased growth. Presumably this is an adaptation to low and fluctuating P conditions. However, the negative effect of increasing [P] on growth is surprising. In contrast, increasing [N] resulted in higher growth rates across ecotypes. This study highlights the importance of understanding differences in growth and toxin production between ecotypes in response to environmental conditions in order to more effectively predict blooms and toxin yields.  相似文献   

15.
Planktonic Nostocales cyanobacteria represent a challenge for microbiological research because of the wide range of cyanotoxins that they synthesize and their invasive behavior, which is presumably enhanced by global warming. To gain insight into the phylogeography of potentially toxic Nostocales from Mediterranean Europe, 31 strains of Anabaena (Anabaena crassa, A. lemmermannii, A. mendotae, and A. planctonica), Aphanizomenon (Aphanizomenon gracile, A. ovalisporum), and Cylindrospermopsis raciborskii were isolated from 14 freshwater bodies in Spain and polyphasically analyzed for their phylogeography, cyanotoxin production, and the presence of cyanotoxin biosynthesis genes. The potent cytotoxin cylindrospermopsin (CYN) was produced by all 6 Aphanizomenon ovalisporum strains at high levels (5.7 to 9.1 μg CYN mg−1 [dry weight]) with low variation between strains (1.5 to 3.9-fold) and a marked extracellular release (19 to 41% dissolved CYN) during exponential growth. Paralytic shellfish poisoning (PSP) neurotoxins (saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin) were detected in 2 Aphanizomenon gracile strains, both containing the sxtA gene. This gene was also amplified in non-PSP toxin-producing Aphanizomenon gracile and Aphanizomenon ovalisporum. Phylogenetic analyses supported the species identification and confirmed the high similarity of Spanish Anabaena and Aphanizomenon strains with other European strains. In contrast, Cylindrospermopsis raciborskii from Spain grouped together with American strains and was clearly separate from the rest of the European strains, raising questions about the current assumptions of the phylogeography and spreading routes of C. raciborskii. The present study confirms that the nostocalean genus Aphanizomenon is a major source of CYN and PSP toxins in Europe and demonstrates the presence of the sxtA gene in CYN-producing Aphanizomenon ovalisporum.  相似文献   

16.
Folic acid deficiency can lead to uracil incorporation into DNA, hypomethylation of DNA, inefficient DNA repair and increase chromosome malsegregation and breakage. Because ionising radiation increases demand for efficient DNA repair and also causes chromosome breaks we hypothesised that folic acid deficiency may increase sensitivity to radiation-induced chromosome breakage. We tested this hypothesis by using the cytokinesis-block micronucleus assay in 10 day WIL2-NS cell cultures at four different folic acid concentrations (0.2, 2, 20, and 200 nM) that span the "normal" physiological range in humans. The study showed a significant dose-dependent increase in frequency of binucleated cells with micronuclei and/or nucleoplasmic bridges with decreasing folic acid concentration (P<0.0001, P=0.028, respectively). These biomarkers of chromosomal instability were also increased in cells irradiated (1.5 Gy gamma-rays) on day 9 relative to un-irradiated controls (P<0.05). Folic acid deficiency and gamma-irradiation were shown to have a significant interactive effect on frequency of cells containing micronuclei (two-way ANOVA, interaction P=0.0039) such that the frequency of radiation-induced micronucleated cells (i.e. after subtracting base-line frequency of un-irradiated controls) increased with decreasing folic acid concentration (P-trend<0.0001). Aneuploidy of chromosome 21, apoptosis and necrosis were increased by folic acid deficiency but not by ionising radiation. The results of this study show that folate status has an important impact on chromosomal stability and is an important modifying factor of cellular sensitivity to radiation-induced genome damage.  相似文献   

17.
The invasive cyanobacterium Cylindrospermopsis raciborskii is increasingly spreading in temperate freshwater habitats worldwide and is of major concern due to its ability to produce potent toxins. It is, therefore, important to understand the mechanisms behind the dispersal of this species. Different hypotheses have been proposed to explain the phylogeography and mechanisms underlying the recent expansion of C. raciborskii into temperate latitudes, but there is still no conclusive evidence whether the obvious ecological success of C. raciborskii is due to selection mechanisms, physiological tolerance, climatic change or radiation after the last ice age. In the present study, new isolates of C. raciborskii from Europe and Africa were genetically characterised by sequencing the ITS1, PC-IGS, nifH and rpoC1 genes and compared to corresponding sequences of C. raciborskii available in GenBank in order to test different phylogeographical hypotheses. The strains were also morphologically examined and screened for production of the hepatotoxic cylindrospermopsin (CYN). We clearly demonstrate a variation among the populations of C. raciborskii from different geographical regions. The phylogenetic analyses revealed a clustering of the strains due to geographic origin. The ITS1 and nifH genes separated into American, European and Australian–African groups, whereas the PC-IGS and rpoC1 separated into American and European/Australian/African groups. An analysis of concatenated data supported the division into American, European and African/Australian groups, and even indicated a subdivision into an African and an Australian group. Our findings do not strongly support any of the existing hypotheses on the phylogeography of C. raciborskii, and most likely a combination of these hypotheses is the best approach to understand the evolution and dispersal of this species.  相似文献   

18.
Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO4) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 μM) was produced using Chelex treatment, and the two Zn compounds ZnSO4 and ZnC were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0 μM. Cell viability was decreased in Zn-depleted cells (0 μM) as well as at 32 μM and 100 μM for both Zn compounds (P < 0.0001) as measured via the MTT assay. DNA strand breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P < 0.05). The Cytokinesis Block Micronucleus Cytome assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P < 0.05). Furthermore, elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were observed at 0 and 0.4 μM Zn, whereas these biomarkers were minimised for both Zn compounds at 4 and 16 μM Zn (P < 0.05), suggesting these concentrations are optimal to maintain genome stability. Expression of PARP, p53 and OGG1 measured by western blotting was increased in Zn-depleted cells indicating that DNA repair mechanisms are activated. These results suggest that maintaining Zn concentrations within the range of 4–16 μM is essential for DNA damage prevention in cultured human oral keratinocytes.  相似文献   

19.
Bolesatine, a glycoprotein fromBoletus satanas Lenz, has previously been shown to be mitogenic in rat and human lymphocytes at very low concentrations, whereas higher concentrations inhibited protein synthesisin vitro and in severalin vivo systems. The low concentrations (1–10 ng/ml) of bolesatine were shown to activate protein kinase C (PKC)in vitro (cell-free system) and in Vero cells. In the same time, Vero cells significantly proliferated when incubated with bolesatine concentrations ranging from 1 to 10 ng/ml; the DNA synthesis increased by 27–59% as referred to the control, and InsP3 release increased in a concentration-dependent manner, up to 142%. At higher concentrations, 1–10 g in cell-free systems, bolesatine inhibits protein synthesis by hydrolyzing the nucleoside triphosphates GTP and ATP.In the present work, the implication of other toxic mechanisms, such as lipid peroxidation and active radical production, was investigated in relation to inhibition of cell growth, whereas possible modifications of the ratio m5dC/dC+m5dC were determined in order to correlate with the biphasic action of bolesatine in Vero cells.Low concentrations of bolesatine up to 10 ng/ml do not increase malonaldehyde (MDA) production, while they induce hypomethylation (5.2% as compared to 7.1%). Higher concentrations (above 20 ng/ml) increase MDA production, from 58 ng/mg of cellular proteins to 113 ng/mg at a concentration of 50 ng/ml, for example, and induce hypermethylation in Vero cell DNA. It is concluded that low concentrations of bolesatine that are proliferative induce hypomethylation, which could be one of the pathways whereby bolesatine induces cell proliferation. Higher concentrations which enhance lipid peroxidation also induce hypermethylation. These mechanisms could be at least partly implicated in the pathway whereby bolesatine induces cell death.Abbreviations MDA malonaldehyde - TBA thiobarbituric acid  相似文献   

20.
The sister chromatid exchange (SCE) frequency, the cell-cycle progression analysis, and the single cell gel electrophoresis technique (SCGE, comet assay) were employed as genetic end-points to investigate the geno- and citotoxicity exerted by dicamba and one of its commercial formulation banvel® (dicamba 57.71%) on Chinese hamster ovary (CHO) cells. Log-phase cells were treated with 1.0–500.0 μg/ml of the herbicides and harvested 24 h later for SCE and cell-cycle progression analyses. All concentrations assessed of both test compounds induced higher SCE frequencies over control values. SCEs increased in a non-dose-dependent manner neither for the pure compound (r = 0.48; P > 0.05) nor for the commercial formulation (r = 0.58, P > 0.05). For the 200.0 μg/ml and 500.0 μg/ml dicamba doses and the 500.0 μg/ml banvel® dose, a significant delay in the cell-cycle progression was found. A regression test showed that the proliferation rate index decreased as a function of either the concentration of dicamba (r = −0.98, P < 0.05) or banvel® (r = −0.88, P < 0.01) titrated into cultures in the 1.0–500.0 μg/ml dose-range. SCGE performed on CHO cells after a 90 min pulse-treatment of dicamba and banvel® within a 50.0–500.0 μg/ml dose-range revealed a clear increase in dicamba-induced DNA damage as an enhancement of the proportion of slightly damaged and damaged cells for all concentrations used (P < 0.01); concomitantly, a decrease of undamaged cells was found over control values (P < 0.01). In banvel®-treated cells, a similar overall result was registered. Dicamba induced a significant increase both in comet length and width over control values (P < 0.01) regardless of its concentration whereas banvel® induced the same effect only within 100.0–500.0 μg/ml dose range (P < 0.01). As detected by three highly sensitive bioassays, the present results clearly showed the capability of dicamba and banvel® to induce DNA and cellular damage on CHO cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号