首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elimination of autoreactive CD4+ T cells through the death receptor Fas/CD95 is an important mechanism of immunological self-tolerance. Fas deficiency results in systemic autoimmunity, yet does not affect the kinetics of T-cell responses to acute antigen exposure or infection. Here we show that Fas and TCR-induced apoptosis are largely restricted to CD4+ T cells with an effector memory phenotype (effector memory T cells (TEM)), whereas central memory and activated naïve CD4+ T cells are relatively resistant to both. Sensitivity of TEM to Fas-induced apoptosis depends on enrichment of Fas in lipid raft microdomains, and is linked to more efficient formation of the Fas death-inducing signaling complex. These results explain how Fas can cull T cells reactive against self-antigens without affecting acute immune responses. This work also identifies Fas-induced apoptosis as a possible immunotherapeutic strategy to eliminate TEM linked to the pathogenesis of a number of autoimmune diseases.  相似文献   

2.
Young DC  Moody DB 《Glycobiology》2006,16(7):103R-112R
The most well-known molecular paradigm of antigen recognition by T cells involves partial digestion of proteins to generate small peptides, which bind to major histocompatibility complex (MHC) proteins. Recent studies of CD1, an MHC class I homolog encoded outside the MHC, have revealed that it presents diverse glycolipids to T cells. The molecular mechanism for lipid antigen recognition involves insertion of the lipid portion of antigens into a hydrophobic groove to form CD1-lipid complexes, which contact T-cell receptors (TCRs). Here, we examine the known antigen structures presented by CD1, the majority of which have sugar moieties that are capable of interacting with TCRs. Recognition of carbohydrate epitopes is precise, and lipid-reactive T cells alter systemic immune responses in models of infectious and autoimmune disease. These findings provide a previously unrecognized mechanism by which the cellular immune system can recognize alterations in many types of carbohydrate structures.  相似文献   

3.
Cloned T cells have been useful for assessing the lytic potential of distinct T cell subsets and for determining the relative contribution of different effector mechanism involved in the lytic process. Alloreactive CD8+ murine T cell clones and cloned murine CD4+ TH1 and TH2 T cells reactive with nominal antigen (ovalbumin) lysed nucleated target cells bearing antigen or coated with anti-CD3 monoclonal antibody in a short term51Cr-release assay. These clones were also evaluated for their ability to lyse efficiently sheep erythrocyte (SRBC) target cells coated with anti-CD3 mAb by a mechanism (presumably involving membrane damage) that does not involve nuclear degradation. Three patterns of lysis were observed: CD8+ and some CD4+ TH2 effector cells lysed efficiently nucleated target cells and anucleated SRBC coated with anti-CD3 mAb. However, CD4+ TH1 (and a few TH2) T cells which lysed nucleated target cells bearing antigen or coated with anti-CD3 mAb didnotlyse efficiently the SRBC coated with anti-CD3 mAb. One CD4 bearing TH2 cell failed to lyse efficiently either nucleated target cells or anucleated SRBC coated with anti-CD3 mAb. These results indicate that both TH1 and TH2 clones have lytic capabilities. Furthermore, they suggest that some but not all TH2 murine T cell clones have lytic characteristics similar to those of conventional CD8+ CTL. However, it is not certain how these patterns of lysis of target cellsin vitro relates to the capacity of CTL to lyse such target cellsin vivo.  相似文献   

4.
5.
Following thymic output, αβ+CD4+ T cells become activated in the periphery when they encounter peptide–major histocompatibility complex. A combination of cytokine and co-stimulatory signals instructs the differentiation of T cells into various lineages and subsequent expansion and contraction during an appropriate and protective immune response. Our understanding of the events leading to T-cell lineage commitment has been dominated by a single fate model describing the commitment of T cells to one of several helper (TH), follicular helper (TFH) or regulatory (TREG) phenotypes. Although a single lineage-committed and dedicated T cell may best execute a single function, the view of a single fate for T cells has recently been challenged. A relatively new paradigm in αβ+CD4+ T-cell biology indicates that T cells are much more flexible than previously appreciated, with the ability to change between helper phenotypes, between helper and follicular helper, or, most extremely, between helper and regulatory functions. In this review, we comprehensively summarize the recent literature identifying when TH or TREG cell plasticity occurs, provide potential mechanisms of plasticity and ask if T-cell plasticity is beneficial or detrimental to immunity.  相似文献   

6.
Plasma membranes of eukaryotic cells are not uniform, possessing distinct cholesterol- and sphingolipid-rich lipid raft microdomains which constitute critical sites for signal transduction through various immune cell receptors and their co-receptors. CD1d is a conserved family of major histocompatibility class I-like molecules, which has been established as an important factor in lipid antigen presentation to natural killer T (NKT) cells. Unlike conventional T cells, recognition of CD1d by the T cell receptor (TCR) of NKT cells does not require CD4 or CD8 co-receptors, which are critical for efficient TCR signaling. We found that murine CD1d (mCD1d) was constitutively present in the plasma membrane lipid rafts on antigen presenting cells, and that this restricted localization was critically important for efficient signal transduction to the target NKT cells, at low ligand densities, even without the involvement of co-receptors. Further our results indicate that there may be additional regulatory molecule(s), co-located in the lipid raft with mCD1d for NKT cell signaling.  相似文献   

7.
8.
CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire. [BMB Reports 2014; 47(5): 241-248]  相似文献   

9.
Galectins have emerged as potent immunoregulatory agents that control chronic inflammation through distinct mechanisms. Here, we report that treatment with Galectin-8 (Gal-8), a tandem-repeat member of the galectin family, reduces retinal pathology and prevents photoreceptor cell damage in a murine model of experimental autoimmune uveitis. Gal-8 treatment increased the number of regulatory T cells (Treg) in both the draining lymph node (dLN) and the inflamed retina. Moreover, a greater percentage of Treg cells in the dLN and retina of Gal-8 treated animals expressed the inhibitory coreceptor cytotoxic T lymphocyte antigen (CTLA)-4, the immunosuppressive cytokine IL-10, and the tissue-homing integrin CD103. Treg cells in the retina of Gal-8-treated mice were primarily inducible Treg cells that lack the expression of neuropilin-1. In addition, Gal-8 treatment blunted production of inflammatory cytokines by retinal T helper type (TH) 1 and TH17 cells. The effect of Gal-8 on T cell differentiation and/or function was specific for tissues undergoing an active immune response, as Gal-8 treatment had no effect on T cell populations in the spleen. Given the need for rational therapies for managing human uveitis, Gal-8 emerges as an attractive therapeutic candidate not only for treating retinal autoimmune diseases, but also for other TH1- and TH17-mediated inflammatory disorders.  相似文献   

10.
Regulatory T cells (Tregs) are critical for maintenance of peripheral tolerance via suppression of T-cell responses, and absence of Tregs results in autoimmunity. The role of aberrations in the Treg pool for the development of systemic lupus erythematosus (SLE, lupus) remains uncertain. Treg-mediated generation of adenosine, dependent on the ectonucleotidase CD39, is an important mechanism for suppression of T-cell responses. We tested whether decreases in numbers of Tregs, and specifically CD39-expressing Tregs, are associated with human lupus. We studied 15 SLE patients, six patients with rheumatoid arthritis (RA) and 24 healthy controls. Treg phenotypic markers, including CD39 expression, were studied by flow cytometry. Varying numbers of sorted Tregs cells were co-cultured with responder T (Tresp) cells, with proliferation assessed by 3H-thymidine incorporation. The proportion of Tregs as defined by Foxp3+ CD25+high CD127−/low was similar in lupus and control populations. CD39-expressing Tregs comprised 37 ± 13% of the Treg population in healthy controls and 36 ± 21% in lupus subjects using nonsteroidal immunosuppressants to control active disease, but was nearly absent in five of six lupus subjects with minimally active disease. In contrast to healthy controls and lupus subjects without the CD39 defect, in SLE subjects with the CD39 defect, adenosine-dependent Treg-mediated suppression was nearly absent. These results suggest that functional defects in Tregs, rather than reduced Treg numbers, are important for the loss of peripheral tolerance in lupus. Presentation of this defect may serve as a biomarker for untreated disease.  相似文献   

11.
MicroRNAs (miRNAs) have emerged as important players in the regulation of T-cell functionality. However, comprehensive insight into the extent of age-related miRNA changes in T cells is lacking. We established miRNA expression patterns of CD45RO- naïve and CD45RO+ memory T-cell subsets isolated from peripheral blood cells from young and elderly individuals. Unsupervised clustering of the miRNA expression data revealed an age-related clustering in the CD45RO- T cells, while CD45RO+ T cells clustered based on expression of CD4 and CD8. Seventeen miRNAs showed an at least 2-fold up- or downregulation in CD45RO- T cells obtained from young as compared to old donors. Validation on the same and independent samples revealed a statistically significant age-related upregulation of miR-21, miR-223 and miR-15a. In a T-cell subset analysis focusing on known age-related phenotypic changes, we showed significantly higher miR-21 and miR-223 levels in CD8+CD45RO-CCR7- TEMRA compared to CD45RO-CCR7+ TNAIVE-cells. Moreover, miR-21 but not miR-223 levels were significantly increased in CD45RO-CD31- post-thymic TNAIVE cells as compared to thymic CD45RO-CD31+ TNAIVE cells. Upon activation of CD45RO- TNAIVE cells we observed a significant induction of miR-21 especially in CD4+ T cells, while miR-223 levels significantly decreased only in CD4+ T cells. Besides composition and activation-induced changes, we showed a borderline significant increase in miR-21 levels upon an increasing number of population doublings in CD4+ T-cell clones. Together, our results show that ageing related changes in miRNA expression are dominant in the CD45RO- T-cell compartment. The differential expression patterns can be explained by age related changes in T-cell composition, i.e. accumulation of CD8+ TEMRA and CD4+ post-thymic expanded CD31- T cells and by cellular ageing, as demonstrated in a longitudinal clonal culture model.  相似文献   

12.
Invariant natural killer T (iNKT) cells are innate T cells with powerful immune regulatory functions that recognize glycolipid antigens presented by the CD1D protein. While iNKT cell-activating glycolipids are currently being explored for their efficacy to improve immunotherapy against infectious diseases and cancer, little is known about the mechanisms that control CD1D antigen presentation and iNKT cell activation in vivo. CD1D molecules survey endocytic pathways to bind lipid antigens in MHC class II-containing compartments (MIICs) before recycling to the plasma membrane. Autophagosomes intersect with MIICs and autophagy-related proteins are known to support antigen loading for increased CD4+ T cell immunity. Here, we report that mice with dendritic cell (DC)-specific deletion of the essential autophagy gene Atg5 showed better CD1D1-restricted glycolipid presentation in vivo. These effects led to enhanced iNKT cell cytokine production upon antigen recognition and lower bacterial loads during Sphingomonas paucimobilis infection. Enhanced iNKT cell activation was independent of receptor-mediated glycolipid uptake or costimulatory signals. Instead, loss of Atg5 in DCs impaired clathrin-dependent internalization of CD1D1 molecules via the adaptor protein complex 2 (AP2) and, thus, increased surface expression of stimulatory CD1D1-glycolipid complexes. These findings indicate that the autophagic machinery assists in the recruitment of AP2 to CD1D1 molecules resulting in attenuated iNKT cell activation, in contrast to the supporting role of macroautophagy in CD4+ T cell stimulation.  相似文献   

13.
Cellular CD1 proteins bind lipids that differ in length (C(12-80)), including antigens that exceed the capacity of the CD1 groove. This could be accomplished by trimming lipids to a uniform length before loading or by inserting each lipid so that it penetrates the groove to a varying extent. New assays to detect antigen fragments generated within human dendritic cells showed that bacterial antigens remained intact, even after delivery to lysosomes, where control lipids were cleaved. Further, recombinant CD1b proteins could bind and present C(80) lipid antigens using a mechanism that did not involve cellular enzymes or lipid cleavage, but was regulated by pH in the physiologic range. We conclude that endosomal acidification acts directly, rather than through enzymatic trimming, to insert lipids into CD1b. Lipids are loaded in an intact form, so that they likely protrude through a portal near the bottom of the groove, which represents an escape hatch for long lipids from mycobacterial pathogens.  相似文献   

14.
Loss of intestinal CD4+ T cells was associated with decreased production of several T-helper 1 (TH1) and TH2 cytokines and increased production of interleukin 17 (IL-17), gamma interferon (IFN-γ), CCL4, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by CD8+ T cells 21 days after simian immunodeficiency virus (SIV) infection in rhesus macaques. Shifting of mucosal TH1 to TH2 or T-cytotoxic 1 (TC1) to TC2 cytokine profiles was not evident. Additionally, both CD4+ and CD8+ T cells showed upregulation of macrophage migration inhibition factor (MIF) and basic fibroblast growth factor (FGF-basic) cytokines that have been linked to HIV disease progression.  相似文献   

15.
Our main objective was to analyze the role of lipid rafts in the activation of Vα-14? and Vα-14+ T hybridomas by dendritic cells. We showed that activation of Vα-14+ hybridomas by dendritic cells or other CD1d-expressing cells was altered by disruption of lipid rafts with the cholesterol chelator MβCD. However, CD1d presentation to autoreactive Vα-14? anti-CD1d hybridomas which do not require the endocytic pathway was not altered. Using partitioning of membrane fractions with Brij98 at 37°C, we confirmed that CD1d was enriched in subcellular fractions corresponding to lipid rafts and we describe that α-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional information on lipid rafts in plasma membranes and allows a dynamics follow-up of lipid rafts partitioning. Using this method, we showed that CD1d plasma membrane expression was sensitive to low concentrations of detergent. This may suggest either that CD1d is associated with lipid rafts mainly in intracellular membranes or that its association with the lipid rafts in the plasma membrane is weak.  相似文献   

16.
The effect of a panel of monoclonal antibodies and heteroantibodies on T-cell proliferation in various assay systems has been examined. The antibodies tested were directed against T-cell differentiation antigens, HLA-DR antigens, and structures defined by an anti-human VH antiserum. As the test cell system highly purified subpopulations of T-cell growth factor (TCGF)-dependent T-cell lines activated either by mitogen or antigen were used. A survey of the data indicates the following: (1) Mitogenic and antigenic triggering of T lymphocytes are mediated through partly different membrane structures. (2) Antigenic stimulation by purified protein derivative (PPD) as well as polyclonal activation induced by OKT3/anti-Leu 4 monoclonal antibodies can be inhibited by heteroantibodies raised against human immunoglobulin VH fragments thus pointing to a possible connection between the antigens detected by these antisera. (3) There does not seem to be differences between the two major subpopulations of T lymphocytes (i.e., helper/inducer and suppressor/cytotoxic cells) as to how they respond to antigens or mitogens in the investigated assay systems. (4) A clear distinction was found between T blasts specific for PPD and allogeneic cells as compared to cytotoxic T cells (CTL), as the T4 and T8 antigens seem to be functionally important for antigen recognition among CTL but not for the blasts proliferating in response to PPD and allogeneic cells. (5) An inhibitory effect of OKT3/anti-Leu 4, OKIal, and anti-HLA-DR on TCGF-dependent growth was detected, possibly indicating a steric relationship between these antigens and TCGF receptors on mitogen-induced T blasts. (6) Soluble factors obtained after incubating adherent cells with OKIal and anti-HLA-DR antibodies seemed to have an inhibitory effect on overall T-cell proliferation stressing the importance of studying the T-cell activation process at different levels in these kinds of experiments. (7) The results further suggest a complexity in the build up of antigen receptors on the various T-effector cells, perhaps also involving receptors for growth factors, HLA-DR antigens, and receptors for the latter.  相似文献   

17.
The CD7 antigen is a member of the immunoglobulin superfamily that expresses on the surface of all thymocytes, a majority of mature T cells, and also natural killer cells. Interestingly, under physiological and different pathological conditions, the loss of CD7 antigen occurred in the subset of CD4+ memory T cells. Various functions have been proposed for CD7, including its role in the activation and intercellular adhesiveness of T cells. Several studies indicate that the number of CD4+CD7 T cells increases in diseases such as chronic inflammation and T-cell malignancies, these being skin inflammatory lesions. Therefore, this can be useful for the diagnosis of cancer cells, especially with reference to blood origin, treatment monitoring, and establishment of new therapies. Therefore, a comprehensive review could be useful to increase our knowledge about the clinical importance of these cells in human disease.  相似文献   

18.
We previously established a model to study CD8+ T cell (TCD8)-based adoptive immunotherapy of cancer using line SV11 mice that develop choroid plexus tumors in the brain due to transgenic expression of Simian Virus 40 large T antigen (Tag). These mice are tolerant to the three dominant TCD8-recognized Tag epitopes I, II/III and IV. However, adoptive transfer of spleen cells from naïve C57BL/6 (B6) mice prolongs SV11 survival following TCD8 priming against the endogenous Tag epitope IV. In addition, survival of SV11 mice is dramatically increased following transfer of lymphocytes from Tag-immune B6 mice. In the current study, we compared the kinetics and magnitude of Tag-specific TCD8 accumulation at the tumor site following adoptive transfer with a high dose of either Tag-immune or naïve donor cells or decreasing doses of Tag-immune lymphocytes. Following adoptive transfer of Tag-immune cells, epitope I- and IV-specific TCD8 accumulated to high levels in the brain of SV11 mice, peaking at 5–7 days, while epitope IV-specific TCD8 derived from naïve donors required three weeks to achieve peak levels. A similar delay in the peak of epitope IV-specific TCD8 accumulation was observed when tenfold fewer Tag-immune donor cells were administered, reducing control of tumor progression. These results suggest that efficient and prolonged control of established autochthonous tumors is associated with high-level early accumulation of adoptively transferred T cells. We also provide evidence that although multiple specificities are represented in the Tag immune donor lymphocytes, epitope IV-specific donor TCD8 play a predominant role in control of tumor growth.  相似文献   

19.
The magnitude and durability of a plasmid DNA vaccine-induced immune response is shaped by immune effector molecules at the site of vaccination. In the present study, we show that antigen expression is modified by type II NKT cells, after interaction with a β2-microglobulin-independent CD1d receptor. After activation, during the first days following plasmid DNA vaccination, NKT cells release IL-5 and MCP-1, leading to a T helper 0 (TH0) cytokine/chemokine profile and a stronger CD8+/CD4+ T cell immune response. Our data indicate that this phenomenon was induced through the strong TH1 chemokine MCP-1 during the early phases of plasmid DNA vaccination because injecting the type II NKT cell-associated MCP-1 during the first 5 days led to 2–3-fold increases in vaccine-elicited T cell responses. This study demonstrates a critical role for NKT cells in plasmid DNA vaccine-induced immune responses. Manipulation of NKT cell function or co-administration of MCP-1 may represent novel methods for enhancing immune responses to plasmid DNA vaccines.  相似文献   

20.
Whereas proteolytic cleavage is crucial for peptide presentation by classical major histocompatibility complex (MHC) proteins to T cells, glycolipids presented by CD1 molecules are typically presented in an unmodified form. However, the mycobacterial lipid antigen mannosyl-β1-phosphomycoketide (MPM) may be processed through hydrolysis in antigen presenting cells, forming mannose and phosphomycoketide (PM). To further test the hypothesis that some lipid antigens are processed, and to generate antigens that lead to defined epitopes for future tuberculosis vaccines or diagnostic tests, we aimed to create hydrolysis-resistant MPM variants that retain their antigenicity. Here, we designed and tested three different, versatile synthetic strategies to chemically stabilize MPM analogs. Crystallographic studies of CD1c complexes with these three new MPM analogs showed anchoring of the lipid tail and phosphate group that is highly comparable to nature-identical MPM, with considerable conformational flexibility for the mannose head group. MPM-3, a difluoromethylene-modified version of MPM that is resistant to hydrolysis, showed altered recognition by cells, but not by CD1c proteins, supporting the cellular antigen processing hypothesis. Furthermore, the synthetic analogs elicited T cell responses that were cross-reactive with nature-identical MPM, fulfilling important requirements for future clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号