首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
CpG methylation of the human T-cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) has been implicated in proviral latency, but there is presently little information available regarding the pattern of LTR methylation and its effect on viral gene expression. To gain insight into the mechanisms of HTLV-1 latency, we have studied methylation of individual CpG sites in the U3-R region of the integrated proviral LTR by using bisulfite genomic sequencing methods. Surprisingly, our results reveal selective hypermethylation of the 5' LTR and accompanying hypomethylation of the 3' LTR in both latently infected cell lines and adult T-cell leukemia (ATL) cells having a complete provirus. Moreover, we observed a lack of CpG methylation in the LTRs of 5'-defective proviruses recovered from ATL samples, which is consistent with the selective hypomethylation of the 3' LTR. Thus, the integrated HTLV-1 provirus in these carriers appears to be hypermethylated in the 5' LTR and hypomethylated in the 3' LTR. These results, together with the observation that proviral gene expression is reactivated by 5-azacytidine in latently infected cell lines, indicate that selective hypermethylation of the HTLV-1 5' LTR is common both in vivo and in vitro. Thus, hypermethylation of the 5' LTR appears to be an important mechanism by which HTLV-1 gene expression is repressed during viral latency.  相似文献   

2.
3.
4.
5.
6.
7.
Transmission of Human T-Cell Leukemia Virus Type 1 to Mice   总被引:4,自引:2,他引:2       下载免费PDF全文
Human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy/tropical spastic paraparesis, and other diseases. For prevention of the transmission of HTLV-1 and manifestation of these diseases, a small-animal model, especially a mouse model, would be useful. We injected HTLV-1-producing T cells (MT-2) intraperitoneally into neonatal C3H/HeJ mice. While the antibody against HTLV-1 antigens was not detectable in C3H/HeJ mice, HTLV-1 provirus was frequently detected in the spleen, lymph nodes, and thymus by PCR. HTLV-1 provirus was present at the level of 0 to 30 molecules in 105 spleen cells at the age of 15 weeks. In addition, a 59-bp flanking sequence of the HTLV-1 integration site was amplified from the spleen DNA by linker-mediated PCR and was confirmed to be derived from the mouse genome. HTLV-1 provirus was found in the T-cell fraction of the mouse spleen. These results indicate that mice can be infected by HTLV-1 and could serve as an animal model for the study of HTLV-1 infection and its pathogenesis in vivo.  相似文献   

8.
9.
10.
Human T-cell lymphotropic virus type 1 (HTLV-1), a complex retrovirus, encodes a hydrophobic 12-kD protein from pX open reading frame (ORF) I that localizes to cellular endomembranes and contains four minimal SH3 binding motifs (PXXP). We have demonstrated the importance of ORF I expression in the establishment of infection and hypothesize that p12(I) has a role in T-cell activation. In this study, we tested interleukin-2 (IL-2) receptor expression, IL-2-mediated proliferation, and Jak/Stat activation in T-cell lines immortalized with either wild-type or ORF I mutant clones of HTLV-1. All cell lines exhibited typical patterns of T-cell markers and maintained mutation fidelity. No significant differences between cell lines were observed in IL-2 receptor chain (alpha, beta, or gamma(c)) expression, in IL-2-mediated proliferation, or in IL-2-induced phosphorylated forms of Stat3, Stat5, Jak1, or Jak3. The expression of ORF I is more likely to play a role in early HTLV-1 infection, such as in the activation of quiescent T cells in vivo.  相似文献   

11.
12.
Y Tanaka  M Hayashi  S Takagi    O Yoshie 《Journal of virology》1996,70(12):8508-8517
Previously, we showed that surface expression of intercellular adhesion molecule 1 (ICAM-1) was strongly upregulated in T cells carrying proviral human T-cell leukemia virus type 1 (HTLV-1) and that the viral transactivator protein Tax1 was capable of inducing the ICAM-1 gene. To determine the responsive elements in the human ICAM-1 gene promoter, a reporter construct in which the 5'-flanking 4.4-kb region of the ICAM-1 gene was linked to the promoterless chloramphenicol acetyltransferase (CAT) gene was cotransfected with expression vectors for Tax1 and Tax2, both of which were separately confirmed to be potent transactivators of the HTLV-1 long terminal repeat (LTR). Tax1 strongly activated the ICAM-1 promoter in all the cell lines tested: three T-cell lines (Jurkat, MOLT-4, and CEM), one monocytoid cell line (U937), and HeLa. Unexpectedly, Tax2 activated the ICAM-1 promoter only in HeLa. By deletion and mutation analyses of the 1.3-kb 5'-flanking region, we found that Tax1 transactivated the ICAM-1 promoter mainly via a cyclic AMP-responsive element (CRE)-like site at -630 to -624 in the Jurkat T-cell line and via an NF-kappaB site at -185 to -177 and an SP-1 site at -59 to -54 in HeLa. On the other hand, Tax2 was totally inactive on the ICAM-1 promoter in Jurkat but transactivated the promoter via the NF-kappaB site at -185 to -177 in HeLa. Gel mobility shift assays demonstrated proteins specifically binding to the CRE-like site at -630 to -624 in Tax1-expressing T-cell lines. Stable expression of Tax1 but not Tax2 in Jurkat subclones enhanced the surface expression of ICAM-1. The differential ability of Tax1 and Tax2 in transactivation of the ICAM-1 gene may be related to the differential pathogenicity of HTLV-1 and HTLV-2.  相似文献   

13.
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) both cause lifelong persistent infections, but differ in their clinical outcomes. HTLV-1 infection causes a chronic or acute T-lymphocytic malignancy in up to 5% of infected individuals whereas HTLV-2 has not been unequivocally linked to a T-cell malignancy. Virus-driven clonal proliferation of infected cells both in vitro and in vivo has been demonstrated in HTLV-1 infection. However, T-cell clonality in HTLV-2 infection has not been rigorously characterized. In this study we used a high-throughput approach in conjunction with flow cytometric sorting to identify and quantify HTLV-2-infected T-cell clones in 28 individuals with natural infection. We show that while genome-wide integration site preferences in vivo were similar to those found in HTLV-1 infection, expansion of HTLV-2-infected clones did not demonstrate the same significant association with the genomic environment of the integrated provirus. The proviral load in HTLV-2 is almost confined to CD8+ T-cells and is composed of a small number of often highly expanded clones. The HTLV-2 load correlated significantly with the degree of dispersion of the clone frequency distribution, which was highly stable over ∼8 years. These results suggest that there are significant differences in the selection forces that control the clonal expansion of virus-infected cells in HTLV-1 and HTLV-2 infection. In addition, our data demonstrate that strong virus-driven proliferation per se does not predispose to malignant transformation in oncoretroviral infections.  相似文献   

14.
Human T-cell leukemia virus type 1 (HTLV-1) is suggested to cause adult T-cell leukemia after 40 to 50 years of latency in a small percentage of carriers. However, little is known about the pathophysiology of the latent period and the reservoir organs where polyclonal proliferation of cells harboring integrated provirus occurs. The availability of animal models would be useful to analyze the latent period of HTLV-1 infection. At 18 months after HTLV-1 infection of C3H/HeJ mice inoculated with the MT-2 cell line, which is an HTLV-1-producing human T-cell line, HTLV-1 provirus was detected in spleen DNA from eight of nine mice. No more than around 100 proviruses were found per 10(5) spleen cells. Cellular sequences flanking the 3' long terminal repeat (LTR) and the clonalities of the cells which harbor integrated HTLV-1 provirus were analyzed by linker-mediated PCR. The results showed that the flanking sequences are of mouse genome origin and that polyclonal proliferation of the spleen cells harboring integrated HTLV-1 provirus had occurred in three mice. A sequence flanking the 5' LTR was isolated from one of the mice and revealed the presence of a 6-nucleotide duplication of cellular sequences, consistent with typical retroviral integration. Moreover, PCR was performed on DNA from infected tissues, with LTR primers and primers derived from seven novel flanking sequences of the three mice. Data revealed that the expected PCR products were found from lymphatic tissues of the same mouse, suggesting that the lymphatic tissues were the reservoir organs for the infected and proliferating cell clones. The mouse model described here should be useful for analysis of the carrier state of HTLV-1 infection in humans.  相似文献   

15.
16.
17.
Expression of imprinted genes is classically associated with differential methylation of specific CpG-rich DNA regions (DMRs). The H19/IGF2 locus is considered a paradigm for epigenetic regulation. In mice, as in humans, the essential H19 DMR--target of the CTCF insulator--is located between the two genes. Here, we performed a pyrosequencing-based quantitative analysis of its CpG methylation in normal human tissues. The quantitative analysis of the methylation level in the H19 DMR revealed three unexpected discrete, individual-specific methylation states. This epigenetic polymorphism was confined to the sixth CTCF binding site while a unique median-methylated profile was found at the third CTCF binding site as well as in the H19 promoter. Monoallelic expression of H19 and IGF2 was maintained independently of the methylation status at the sixth CTCF binding site and the IGF2 DMR2 displayed a median-methylated profile in all individuals and tissues analyzed. Interestingly, the methylation profile was genetically transmitted. Transgenerational inheritance of the H19 methylation profile was compatible with a simple model involving one gene with three alleles. The existence of three individual-specific epigenotypes in the H19 DMR in a non-pathological situation means it is important to reconsider the diagnostic value and functional importance of the sixth CTCF binding site.  相似文献   

18.
19.
Adult T-cell leukemia (ATL) is a T-cell malignancy associated with human T-cell leukemia virus type 1 (HTLV-1) and characterized by visceral invasion. Degradation of the extracellular matrix by matrix metalloproteinases (MMPs) is a crucial process in invasion of tumors and metastasis. MMP-7 (or matrilysin), is a “minimal domain MMP” with proteolytic activity against components of the extracellular matrix. To determine the involvement of MMP-7 in visceral spread in ATL, this study investigated MMP-7 expression in ATL. MMP-7 expression was identified in HTLV-1-infected T-cell lines, peripheral blood ATL cells and ATL cells in lymph nodes, but not in uninfected T-cell lines or normal peripheral blood mononuclear cells. MMP-7 expression was induced following infection of a human T-cell line with HTLV-1, and specifically by the viral protein Tax. Functionally, MMP-7 promoted cell migration of HTLV-1-infected T cells. The MMP-7 promoter activity was increased by Tax and reduced by deletion of the activator protein-1 (AP-1) binding site. Electrophoretic mobility shift assay showed high levels of AP-1 binding proteins, including JunD, in HTLV-1-infected T-cell lines and ATL cells, and Tax elicited JunD binding to the MMP-7 AP-1 element. Tax-induced MMP-7 activation was inhibited by dominant negative JunD and augmented by JunD/JunD homodimers. Short interfering RNA against JunD inhibited MMP-7 mRNA expression in HTLV-1-infected T-cell lines. These results suggest that the induction of MMP-7 by Tax is regulated by JunD and that MMP-7 could facilitate visceral invasion in ATL.  相似文献   

20.
A approximately 2.4-kb imprinting control region (ICR) regulates somatic monoallelic expression of the Igf2 and H19 genes. This is achieved through DNA methylation-dependent chromatin insulator and promoter silencing activities on the maternal and paternal chromosomes, respectively. In somatic cells, the hypomethylated maternally inherited ICR binds the insulator protein CTCF at four sites and blocks activity of the proximal Igf2 promoter by insulating it from its distal enhancers. CTCF binding is thought to play a direct role in inhibiting methylation of the ICR in female germ cells and in somatic cells and, therefore, in establishing and maintaining imprinting of the Igf2/H19 region. Here, we report on the effects of eliminating ICR CTCF binding by severely mutating all four sites in mice. We found that in the female and male germ lines, the mutant ICR remained hypomethylated and hypermethylated, respectively, showing that the CTCF binding sites are dispensable for imprinting establishment. Postfertilization, the maternal mutant ICR acquired methylation, which could be explained by loss of methylation inhibition, which is normally provided by CTCF binding. Adjacent regions in cis-the H19 promoter and gene-also acquired methylation, accompanied by downregulation of H19. This could be the result of a silencing effect of the methylated maternal ICR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号