首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In nuclei isolated from cells of the B50 rat neuroblastoma line the stimulatory effect of methyl mercury on alpha-amanitin-sensitive RNA synthesis is very much reduced compared to the stimulatory effect in HeLa nuclei (see: Frenkel G. D. and Randles K. (1982) Specific stimulation of alpha-amanitin-sensitive RNA synthesis in isolated HeLa nuclei by methyl mercury. J. biol. Chem. 257, 6275-6279). 2. The stimulatory effect of another mercury compound, p-hydroxymercuribenzoate, was also much less pronounced in the B50 nuclei. 3. Similar results were obtained with nuclei isolated from B50 cells which had been induced to differentiate by exposure to dibutaryl cyclic AMP. 4. Nuclei isolated from cells of another rat neuroblastoma line (B35), and nuclei from cells of a human neuroblastoma line both exhibited levels of stimulation similar to that of HeLa nuclei. 5. The B50 and HeLa cells were also compared as to their sensitivity to other effects of methyl mercury.  相似文献   

2.
3.
Mercury and organomercurial resistance determined by genes on ten Pseudomonas aeruginosa plasmids and one Pseudomonas putida plasmid have been studied with regard to the range of substrates and the range of inducers. The plasmidless strains were sensitive to growth inhibition by Hg(2+) and did not volatilize Hg(0) from Hg(2+). A strain with plasmid RP1 (which does not confer resistance to Hg(2+)) similarly did not volatilize mercury. All 10 plasmids determine mercury resistance by way of an inducible enzyme system. Hg(2+) was reduced to Hg(0), which is insoluble in water and rapidly volatilizes from the growth medium. Plasmids pMG1, pMG2, R26, R933, R93-1, and pVS1 in P. aeruginosa and MER in P. putida conferred resistance to and the ability to volatilize mercury from Hg(2+), but strains with these plasmids were sensitive to and could not volatilize mercury from the organomercurials methylmercury, ethylmercury, phenylmercury, and thimerosal. These plasmids, in addition, conferred resistance to the organomercurials merbromin, p-hydroxymercuribenzoate, and fluorescein mercuric acetate. The other plasmids, FP2, R38, R3108, and pVS2, determined resistance to and decomposition of a range of organomercurials, including methylmercury, ethylmercury, phenylmercury, and thimerosal. These plasmids also conferred resistance to the organomercurials merbromin, p-hydroxymercuribenzoate, and fluorescein mercuric acetate by a mechanism not involving degradation. In all cases, organomercurial decomposition and mercury volatilization were induced by exposure to Hg(2+) or organomercurials. The plasmids differed in the relative efficacy of inducers. Hg(2+) resistance with strains that are organomercurial sensitive appeared to be induced preferentially by Hg(2+) and only poorly by organomercurials to which the cells are sensitive. However, the organomercurials p-hydroxymercuribenzoate, merbromin, and fluorescein mercuric acetate were strong gratuitous inducers but not substrates for the Hg(2+) volatilization system. With strains resistant to phenylmercury and thimerosal, these organomercurials were both inducers and substrates.  相似文献   

4.
5.
This study characterizes the structural and functional significance of sulfhydryl residues in human plasma heparin cofactor II (HCII). For quantification of sulfhydryl groups, the extinction coefficient of HCII was redetermined and found to be 0.593 ml mg-1 cm-1 using second-derivative spectroscopy and multicomponent analysis assuming 4, 10, and 2 residues of tryptophan, tyrosine, and tyrosine-O-sulfate per mole of protein, respectively. The results show that tyrosine-O-sulfate residues in HCII and in cholecystokinin peptide fragments (as model compounds) do not significantly contribute to the absorbance spectrum from 280 to 300 nm. A total of three sulfhydryl groups per mole of HCII was detected by Ellman's reagent titration, with or without treatment with dithioerythritol, indicating the absence of intramolecular disulfide bonds. Incubation of HCII with 0.1-10 mM dithioerythritol did not diminish its heparin-enhanced thrombin inhibition activity. Treatment with various sulfhydryl-specific reagents, including p-mercuribenzoate, HgCl2, and N-substituted maleimide derivatives, inactivated HCII. Titration with Ellman's reagent after these reactions identified the modification site as a cysteinyl residue(s). However, complete methanethio derivatization of the sulfhydryl groups of HCII using methyl methanethiosulfonate did not alter heparin-catalyzed thrombin inhibition. These results indicate that the sulfhydryl groups of HCII are not essential for thrombin inhibition. HCII differs from antithrombin III, which contains an essential disulfide bond for heparin-dependent thrombin inhibition (Longas, M. O., et al. (1980) J. Biol. Chem. 255, 3436). Furthermore, within the "serpin" (serine proteinase inhibitor) superfamily, HCII resembles chicken ovalbumin in occurrence of sulfhydryl residues and reactivity with various sulfhydryl group-directed compounds.  相似文献   

6.
The metabolism of [U-(14)C]phenylmercury acetate was studied in the rat. After a single subcutaneous dose a small proportion is excreted unchanged in urine, and a larger amount in bile with some resorption from the gut. The greater part of the dose is broken down in the tissues to yield inorganic mercury which is excreted mainly in faeces, and conjugates of phenol and quinol are excreted in urine. In experiments in vitro phenylmercury is broken down by liver homogenates to release inorganic mercury and benzene; this reaction is effected by the soluble, but not the microsomal, fraction and does not require NADPH or NADH. No elemental mercury is formed under these conditions. It is probable that this reaction occurs in vivo and the benzene produced is rapidly converted into phenol and quinol by microsomal enzymes.  相似文献   

7.
Asynchronously growing V79 Chinese hamster cells were treated with colcemid, diamide, carbaryl and methyl mercury, which are all known to be spindle disturbing agents. For each compound the dose response for c-mitosis, survival and level of free sulfhydryl groups was investigated under comparable conditions. Diamide, carbaryl and methyl were all found to give a significant increase of c-mitosis at a dose giving a decrease of non-protein sulfhydryl groups (NPSH, mainly glutathione) of 30–40% suggesting that a decrease of this magnitude may have a predictive value for spindle disturbances. Despite this similarity at concentrations close to the respective thresholds it was found that the c-mitotic activity at higher concentrations was not a simple function of average NPSH decrease. Diamide, which rapidly oxidizes glutathione to glutathione disulfide, was a less efficient c-mitotic agent than carbaryl and methyl mercury in relation to average NPSH decrease at higher concentrations. Protein bound sulfhydryl groups (PSH) were not significantly affected with diamide and carbaryl at their lowest c-mitotic concentrations while methyl mercury caused a significant decrease already at concentrations below the lowest c-mitotic concentration. With colcemid a significant decrease of average NPSH (14%) and PSH (12%) was observed only with concentrations giving close to 100% c-mitotic cells. Concentrations giving more than 20% c-mitosis gave a pronounced decrease of survival with carbaryl, diamide and methyl mercury while no toxic effects were obtained with colcemid, not even with concentrations giving close to 100% c-mitosis. Carbaryl, diamide and methyl mercury caused increased glutathione peroxidase activity indicating that these compounds cause increased lipid peroxidation. The possible connection between peroxidative damage of membranes and c-mitosis is discussed.  相似文献   

8.
9.
The effect of cortisone and endotoxin, singly and in combination, on ribonucleic acid (RNA) synthesis in livers of adrenalectomized mice was determined. This was accomplished by measuring the incorporation either of inorganic (32)P or of (14)C-orotic acid into the RNA. Under similar conditions, the effect of these agents on the rate of protein synthesis was examined with the use of (14)C-leucine. Bacterial endotoxin was found to augment the uptake of isotope in the RNA and in the protein of the liver. These reactions did not appear to be mediated via the pancreatic hormone insulin, which was found to depress the incorporation of the radioactive compounds into RNA. Cortisone increased the uptake of isotope in liver RNA but depressed the incorporation of leucine into hepatic protein. These results indicate that the previously observed ability of endotoxin to prevent the hormone induction of hepatic enzymes, such as tryptophan oxygenase, is not associated with impaired synthesis of liver RNA or protein.  相似文献   

10.
In vitro mitogenic stimulation of murine spleen cells by herpes simplex virus.   总被引:13,自引:0,他引:13  
Spleen cells of B6 mice not previously immunized were induced to DNA synthesis by supernatants from HSV-infected tissue culture. The stimulatory principle could be passed through a 45-micrometer filter and sedimented at 100,000 x G. It was abolished by UV light, heating at 56 degrees C, and by an anti-HSV serum. The possibility that the observed stimulation was caused by LPS was therefore excluded, and there was a-so no indication of mycoplasma contamination. Partial purification of spleen cells from macrophages resulted in an increased stimulation by HSV. From experiments with nylon columns, anti-theta antibody, and nude mice it was concluded that HSV acted as a B cell mitogen. Strains of both HSV types 1 and 2 were stimulatory for B6 spleen cells. Of nine freshly isolated HSV strains with identical passage history (twice in HEF) four were strongly stimulatory, three showed a moderate stimulation, and two did not stimulate. Spleen cells from A/J and DBA/2 mice were stimulated to the same extent by HSV (WAL) as spleen cells from B6 mice. No viral replication was demonstrable in B6 spleen cell cultures stimulated for DNA synthesis by HSV. Thus our study demonstrates induction of cellular DNA synthesis in B lymphocytes by HSV which is abolished by inactivation of the virus.  相似文献   

11.
Susceptibility to inorganic mercuric ions and to organomercurials of 237 Pseudomonas aeruginosa clinical strains isolated in Mexico was determined by agar dilution tests. Resistant strains fell into two classes: i) narrow-spectrum resistant strains (27% of total isolates) resistant only to mercuric ions and to merbromin, and most grouped in pyocin type 1; and ii) broad-spectrum resistant strains (5%) with additional resistances to thimerosal, phenylmercury, methylmercury and p-hydroxymercuribenzoate, that belonged mostly to pyocin type 10. Mercurial resistant isolates showed a higher proportion of resistance to antibiotics and metals than did mercurial sensitive isolates, and broad-spectrum resistant strains had the highest frequency of resistance to antibiotics and to tellurite and arsenate.  相似文献   

12.
Two forms of DNA primase stimulatory factor have been purified from mouse FM3A cells and shown to have RNase H activity. One of the factors, which consists of three polypeptides of 42,000, 41,000, and 27,000 daltons, was characterized in its properties as RNase H and DNA primase stimulatory factor. The nucleolytic activity of the factor specifically digested the RNA component of RNA-DNA hybrids in an endonucleolytic manner. The stimulation by the factor was observed in DNA synthesis by DNA primase-DNA polymerase alpha complex on unprimed DNA templates, and the DNA chains synthesized under these conditions in the presence of the factor were much shorter than those synthesized in its absence. The stimulatory effect of the factor on DNA primase activity was directly confirmed with DNA primase dissociated from DNA polymerase alpha by the observation of the increase in the number of synthesized oligoribonucleotides. The primer RNA synthesis by DNA primase-DNA polymerase alpha complex under the condition where DNA synthesis occurred was also significantly stimulated by the factor. Furthermore, under these conditions RNA primers were removed from DNA chains by the RNase H activity of the factor.  相似文献   

13.
Activity of a 2.5 S mouse myeloma DNA polymerase (termed DNA polymerase II) measured with either poly(rA) or poly(dA) as template did not require sulfhydryl-reducing reagents, but was sensitive to inhibition by p-hydroxymercuribenzoate and the sulfhydryl-alkylating reagent, N-ethylmaleimide; however, the activity was much more sensitive to inhibition by p-hydroxymercuribenzoate than by the sulfhydryl-alkylating reagent. The p-hydroxymercuribenzoate inhibition appeared to involve the mercurial portion of the p-hydroxymercuribenzoate molecule because HgCl2 was an equally effective inhibitor, while p-hydroxybenzoate had little effect upon enzyme activity. The p-hydroxymercuribenzoate inhibition was reversed by an equal concentration of the sulfhydryl-reducing reagent, dithiothreitol.  相似文献   

14.
Lecithin:cholesterol acyltransferase, E.C. 2.3.1.43, can be either stimulated or inhibited by reducing reagents containing free sulfhydryl groups. Mercaptoethanol and dithiothreitol stimulate enzyme activity while cysteine and reduced glutathione inhibit activity. The oxidizing disulfide reagent 2-pyridine disulfide has minimal effects on enzyme activity by itself but suppresses the stimulatory effect of mercaptoethanol.  相似文献   

15.
Glutamine stimulated glycogen synthesis and lactate production in hepatocytes from overnight-fasted normal and diabetic rats. The effect, which was half-maximal with about 3 mM-glutamine, depended on glucose concentration and was maximal below 10 mM-glucose. beta-2-Aminobicyclo[2.2.1.]heptane-2-carboxylic acid, an analogue of leucine, stimulated glutaminase flux, but inhibited the stimulation of glycogen synthesis by glutamine. Various purine analogues and inhibitors of purine synthesis were found to inhibit glycogen synthesis from glucose, but they did not abolish the stimulatory effect of glutamine on glycogen synthesis. The correlation between the rate of glycogen synthesis and synthase activity suggested that the stimulation of glycogen synthesis by glutamine depended solely on the activation of glycogen synthase. This activation of synthase was not due to a change in total synthase, nor was it caused by a faster inactivation of glycogen phosphorylase, as was the case after glucose. It could, however, result from a stimulation of synthase phosphatase, since, after the addition of 1 nM-glucagon or 10 nM-vasopressin, glutamine did not interfere with the inactivation of synthase, but did promote its subsequent re-activation. Glutamine was also found to inhibit ketone-body production and to stimulate lipogenesis.  相似文献   

16.
Treatment of rat liver cytosol containing temperature-transformed [3H]dexamethasone-bound receptors at 0 degree C with the sulfhydryl modifying reagent methyl methanethiosulfonate (MMTS) inhibits the DNA-binding activity of the receptor, and DNA-binding activity is restored after addition of dithiothreitol (DTT). However, transformed receptors that are treated with MMTS and then separated from low Mr components of cytosol by passage through a column of Sephadex G-50 have very little DNA-binding activity when DTT is added to regenerate sulfhydryl moities. The receptors will bind to DNA if whole liver cytosol or boiled liver cytosol is added in addition to DTT. The effect of boiled cytosol is mimicked by purified rat thioredoxin or bovine RNase A in a manner that does not reflect the reducing activity of the former or the catalytic activity of the latter. This suggests that the reported ability of each of these heat-stable peptides to stimulate DNA binding by glucocorticoid receptors is not a biologically relevant action. We suggest that stimulation of DNA binding of partially purified receptors by boiled cytosol does not constitute a reconstitution of a complete cytosolic system in which the dissociated receptor must associate with a specific heat-stable accessory protein required for DNA binding, as has been suggested in the "two-step" model of receptor transformation recently proposed by Schmidt et al. (Schmidt T.J., Miller-Diener, A., Webb M.L. and Litwack G. (1985) J. biol. Chem. 260, 16255-16262).  相似文献   

17.
The release of arachidonic acid and its metabolites, prostaglandin E2 and thromboxane A2, from WI-38 human lung fibroblasts was modulated by p-hydroxymercuribenzoate. Exposure to the inhibitor resulted in a dose-dependent decrease in [1-14C]arachidonic acid uptake and incorporation into phospholipids and neutral lipid pools. Activities of lung fibroblast arachidonyl-CoA synthetase and lysolecithin acyltransferase were inhibited by 100 microM p-hydroxymercuribenzoate. [14C]Arachidonic acid labelled fibroblasts exhibited an increased release of [14C]arachidonate and [14C]prostaglandin E2 of 54% and 112%, respectively, when exposed to 100 microM of inhibitor. The stimulatory effects of 8.0 microM delta 1-tetrahydrocannabinol on arachidonate release and prostaglandin E synthesis (Burstein, S., Hunter, S.A., Sedor, C. and Shulman, S. (1982) Biochem. Pharmacol. 31, 2361-2365) were modified by the inclusion of inhibiting agent, resulting in a 608% stimulation in arachidonic acid release, while prostaglandin E2 and thromboxane A2 synthesis increased 894% and 390%, respectively, over levels obtained by untreated cells. The levels of arachidonate metabolites were altered by inhibitor when compared to cells treated with cannabinoid alone. No significant inhibition by delta 1-tetrahydrocannabinol was found on arachidonic uptake in these cells. In unlabelled studies, p-hydroxymercuribenzoate resulted in a profound, dose-dependent stimulation of prostaglandin E synthesis of 1490% at 150 microM inhibitor concentration. These results provide evidence that free arachidonate is reincorporated via acylation, thereby implicating this pathway as a possible control mechanism for the synthesis of arachidonic acid metabolites.  相似文献   

18.
Whole serum and elevated pH previously had been found to stimulate both cell multiplication and hyaluronic acid production by chick embryo fibroblasts in culture. In a study to determine whether cell multiplication and hyaluronic acid production both respond to a single well-defined substance, insulin was found to stimulate, and cortisol to inhibit both processes coordinately. It appears, therefore, that multiplication and differentiated function in fibroblasts respond to a common underlying regulatory signal. Inhibition of ribosomal RNA synthesis by actinomycin D does not prevent serum stimulation of hyaluronic acid production, but inhibition of total RNA synthesis does. If total RNA synthesis is inhibited only after the hyaluronic acid production has reached a new high level, it continues at that level for the next five hours. The stimulatory treatment causes an increase in the activity of the enzyme hyaluronate synthetase. Inhibition of protein synthesis prevents any increase in hyaluronic acid production, and reduces the basal level of production. Reduction of the availability of Mg2+ in the medium coordinately inhibits DNA synthesis and hyaluronic acid production. The results are discussed in the light of a model for coordinate control growth and metabolism based on the availability of Mg2+.  相似文献   

19.
The accessibility of sulfhydryl groups at the pyruvate dehydrogenase component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli was reinvestigated. Hydrophobic interactions appear to control the reactivity of an essential cysteine residue at the active site with thiol reagents. This explains why the essential cysteine residue reacts only with thiol reagents of minor polarity, like p-hydroxymercuribenzoate or phenylmercuric nitrate, but not with Ellman's reagent or jodoacetamide. The pyruvate dehydrogenase component was modified with a nitroxide derivative of p-hydroxymercuribenzoate. The ESR spectrum of the spin-labelled enzyme changed dramatically upon addition of the cofactors thiamine diphosphate and Mg2+. Obviously spin-spin interaction occurs under these conditions caused by a transition of an inactive to an active state of the enzyme. The same conformational change is observed when the allosteric activator AMP instead of the cofactors was bound to the enzyme. The implications of these results for the allosteric regulation of the pyruvate dehydrogenase complex are discussed.  相似文献   

20.
A self-reactive T cell hybridoma that secretes IL-2 in response to H-2d haplotype cells resulted from a fusion of BALB/cBy lymph node cells with the AKR thymoma BW5147. The lymph node cells used had been enriched for cells reactive to (TG)-A--L, but neither this antigen nor fetal calf serum were required for stimulation of the hybridoma designated 3DT52.5. The gene product responsible for stimulation mapped to the H-2D region. Allogeneic cells of the b, f, k, q, and s haplotypes failed to stimulate. Not all H-2d haplotype cells were effective stimulators of 3DT52.5. Peritoneal cells and splenic B cells were much more stimulatory than splenic T cells. Most tumor cell lines of H-2d derivation and of B cell or macrophage/monocyte lineage were stimulatory, whereas H-2d T cell lines were not. The capacity to stimulate 3DT52.5 did not correlate with the ability to stimulate I region-restricted hybridomas, or with the ability to be induced to stimulate such hybridomas. Stimulatory cell lines did not apparently produce a soluble factor required for stimulation, and negative cell lines were not inhibitory. The monoclonal antibody 27-11-13, which reacts with H-2D of the b, d, and q haplotypes, inhibited stimulation of 3DT52.5 but did not inhibit stimulation of the sibling hybridoma 3DT18.11, which responds to (TG)-A--L plus I-Ad. Conversely, the monoclonal anti-I-Ad antibody MK-D6 inhibited stimulation of 3DT18.11 but not 3DT52.5. Although it is clear that 3DT52.5 recognizes a class I antigen coded for in the H-2D region, the precise molecular nature of the antigen is unknown. The structure of the antigen receptor on this hybridoma may prove to be of interest when it can be compared with receptors found on T cell hybridomas restricted by class II histocompatibility antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号