首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A biological evaluation of the antiadhesive activity of novel heparan sulfate glycosaminoglycans mimetic compounds (KI-compounds) is described. In an adhesion assay, KI-111 [2-(4-fluoro-3-nitrobenzoyl)benzoic acetic anhydride] was found to exert potent inhibitory activities against the adhesion of human fibrosarcoma HT1080 cells and HeLa cells to fibronectin. Cell growth, migration, and invasion of HT1080 cells were also inhibited by KI-111 at almost equal concentrations.  相似文献   

2.

Background

Hormones and growth factors influence the proliferation and invasiveness of human mesenchymal tumors. The highly aggressive human fibrosarcoma HT1080 cell line harbors classical androgen receptor (AR) that responds to androgens triggering cell migration in the absence of significant mitogenesis. As occurs in many human cancer cells, HT1080 cells also express epidermal growth factor receptor (EGFR).

Experimental

Findings: We report that the pure anti-androgen Casodex inhibits the growth of HT1080 cell xenografts in immune-depressed mice, revealing a novel role of AR in fibrosarcoma progression. In HT1080 cultured cells EGF, but not androgens, robustly increases DNA synthesis. Casodex abolishes the EGF mitogenic effect, implying a crosstalk between EGFR and AR. The mechanism underlying this crosstalk has been analyzed using an AR-derived small peptide, S1, which prevents AR/Src tyrosine kinase association and androgen-dependent Src activation. Present findings show that in HT1080 cells EGF induces AR/Src Association, and the S1 peptide abolishes both the assembly of this complex and Src activation. The S1 peptide inhibits EGF-stimulated DNA synthesis, cell matrix metalloproteinase-9 (MMP-9) secretion and invasiveness of HT1080 cells. Both Casodex and S1 peptide also prevent DNA synthesis and migration triggered by EGF in various human cancer-derived cells (prostate, breast, colon and pancreas) that express AR.

Conclusion

This study shows that targeting the AR domain involved in AR/Src association impairs EGF signaling in human fibrosarcoma HT1080 cells. The EGF-elicited processes inhibited by the peptide (DNA synthesis, MMP-9 secretion and invasiveness) cooperate in increasing the aggressive phenotype of HT1080 cells. Therefore, AR represents a new potential therapeutic target in human fibrosarcoma, as supported by Casodex inhibition of HT1080 cell xenografts. The extension of these findings in various human cancer-derived cell lines highlights the conservation of this process across divergent cancer cells and identifies new potential targets in the therapeutic approach to human cancers.  相似文献   

3.

Background

Hyaluronan (HA) a glycosaminoglycan, is capable of transmitting extracellular matrix derived signals to regulate cellular functions. In this study, we investigated whether the changes in HT1080 and B6FS fibrosarcoma cell lines HA metabolism induced by basic fibroblast growth factor (bFGF) are correlated to their migration.

Methods

Real-time PCR, in vitro wound healing assay, siRNA transfection, enzyme digestions, western blotting and immunofluorescence were utilized.

Results

bFGF inhibited the degradation of HA by decreasing hyaluronidase-2 expression in HT1080 cells (p = 0.0028), increased HA-synthase-1 and -2 expression as we previously found and enhanced high molecular weight HA deposition in the pericellular matrix. Increased endogenous HA production (p = 0.0022) and treatment with exogenous high molecular weight HA (p = 0.0268) correlated with a significant decrease of HT1080 cell migration capacity. Transfection with siHAS2 and siHAS1 showed that mainly HAS1 synthesized high molecular weight HA regulates HT1080 cell motility. Induced degradation of the HA content by hyaluronidase treatment and addition of low molecular weight HA, resulted in a significant stimulation of HT1080 cells' motility (p < 0.01). In contrast, no effects on B6FS fibrosarcoma cell motility were observed.

Conclusions

bFGF regulates, in a cell-specific manner the migration capability of fibrosarcoma cells by modulating their HA metabolism.HA metabolism is suggested to be a potential therapeutic target in fibrosarcoma.  相似文献   

4.
Metastasis is a major cause of death in cancer patients. Our previous studies showed that pinosylvin, a naturally occurring trans-stilbenoid mainly found in Pinus species, exhibited a potential cancer chemopreventive activity and also inhibited the growth of various human cancer cell lines via the regulation of cell cycle progression. In this study, we further evaluated the potential antimetastatic activity of pinosylvin in in vitro and in vivo models. Pinosylvin suppressed the expression of matrix metalloproteinase (MMP)-2, MMP-9 and membrane type 1-MMP in cultured human fibrosarcoma HT1080 cells. We also found that pinosylvin inhibited the migration of HT1080 cells in colony dispersion and wound healing assay systems. In in vivo spontaneous pulmonary metastasis model employing intravenously injected CT26 mouse colon cancer cells in Balb/c mice, pinosylvin (10 mg/kg body weight, intraperitoneal administration) significantly inhibited the formation of tumor nodules and tumor weight in lung tissues. The analysis of tumor in lung tissues indicated that the antimetastatic effect of pinosylvin coincided with the down-regulation of MMP-9 and cyclooxygenase-2 expression, and phosphorylation of ERK1/2 and Akt. These data suggest that pinosylvin might be an effective inhibitor of tumor cell metastasis via modulation of MMPs.  相似文献   

5.
Chang WT  Pan CY  Rajanbabu V  Cheng CW  Chen JY 《Peptides》2011,32(2):342-352
The inhibitory function of tilapia hepcidin (TH)1-5, an antimicrobial peptide, was not examined in previous studies. In this study, we synthesized the TH1-5 peptide and tested TH1-5's antitumor activity against several tumor cell lines. We show that TH1-5 inhibited the proliferation of tumor cells and reduced colony formation in a soft agar assay. Scanning electron microscopy and transmission electron microscopy showed that TH1-5 altered the membrane structure similar to the function of a lytic peptide. Acridine orange/ethidium bromide staining, a wound-healing assay, and a flow cytometric analysis showed that TH1-5 induced necrosis with high-concentration treatment and induced apoptosis with low-concentration treatment. Inflammation is known to be closely associated with the development of cancer. TH1-5 showing anti-inflammatory effects in a previous publication induced us to evaluate the anti-inflammatory effects in cancer cell lines through the expressions of immune-related genes after being treated with the TH1-5 peptide. However, real-time qualitative RT-PCR indicated that TH1-5 treatment induced downregulation of the expressions of interleukin (IL)-6, IL-8, IL-12, IL-15, interferon-γ, CTSG, caspase-7, and Bcl-2, and upregulation of IL-2 and CAPN5 in HeLa cells, and upregulation of IL-8 and CTSG in HT1080 cells. These results suggest that TH1-5 possibly induces an inflammatory response in HeLa cells, but not in HT1080 cells. Overall, these results indicate that TH1-5 possesses the potential to be a novel peptide for cancer therapy.  相似文献   

6.
7.
Lysophosphatidic acid (LPA) interacts with at least six G protein-coupled transmembrane LPA receptors (LPA1-LPA6). Recently, we have reported that LPA3 indicated opposite effects on cell migration, depending on the cell types. In the present study, to assess an involvement of LPA3 on cell migration of sarcoma cells, we generated LPA receptor-3 (LPAR3)-knockdown (HT1080-sh3 and HOS-sh3, respectively) cells from fibrosarcoma HT1080 and osteosarcoma HOS cells, and measured their cell migration abilities. In cell motility assay with a Cell Culture Insert, both LPAR3-knockdown cells showed significantly lower cell motile activities than control cells. Next, to investigate the effect of LPAR3-knockdown on invasion activity, which degraded the extracellular matrices, the Matrigel-coated filter was used. HT1080-sh3 cells showed significantly low invasive activity compared with control cells, while no invasive activity was found in HOS-sh3 cells. In gelatin zymography, no significant difference of matrix metalloproteinase (MMP)-2 and MMP-9 activities were detected in all cells. The results indicated that LPA3 acts as a positive regulator of cell motility and invasion in sarcoma cells, suggesting that LPA signaling pathway via LPA3 may be involved in the progression of sarcoma cells.  相似文献   

8.
Hsu JC  Lin LC  Tzen JT  Chen JY 《Peptides》2011,32(6):1110-1116
Pardaxin, a pore-forming antimicrobial peptide that encodes 33 amino acids was isolated from the Red Sea Moses sole, Pardachirus mamoratus. In this study, we investigated its antitumor activity in human fibrosarcoma (HT-1080) cells and epithelial carcinoma (HeLa) cells. In vitro results showed that the synthetic pardaxin peptide had antitumor activity in these two types of cancer cells and that 15 μg/ml pardaxin did not lyse human red blood cells. Moreover, this synthetic pardaxin inhibited the proliferation of HT1080 cells in a dose-dependent manner and induced programmed cell death in HeLa cells. DNA fragmentation and increases in the subG1 phase and caspase 8 activities suggest that pardaxin caused HeLa cell death by inducing apoptosis, but had a different mechanism in HT1080 cells.  相似文献   

9.
The transmembrane heparan sulfate proteoglycan syndecan-1 was identified from a human placenta cDNA library by the expression cloning method as a gene product that interacts with membrane type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with syndecan-1 in HEK293T cells promoted syndecan-1 shedding, and concentration of cell-associated syndecan-1 was reduced. Treatment of cells with MMP inhibitor BB-94 or tissue inhibitor of MMP (TIMP)-2 but not TIMP-1 interfered with the syndecan-1 shedding promoted by MT1-MMP expression. In contrast, syndecan-1 shedding induced by 12-O-tetradecanoylphorbol-13-acetate treatment was inhibited by BB-94 but not by either TIMP-1 or TIMP-2. Shedding of syndecan-1 was also induced by MT3-MMP but not by other MT-MMPs. Recombinant syndecan-1 core protein was shown to be cleaved by recombinant MT1-MMP or MT3-MMP preferentially at the Gly245-Leu246 peptide bond. HT1080 fibrosarcoma cells stably transfected with the syndecan-1 cDNA (HT1080/SDC), which express endogenous MT1-MMP, spontaneously shed syndecan-1. Migration of HT1080/SDC cells on collagen-coated dishes was significantly slower than that of control HT1080 cells. Treatment of HT1080/SDC cells with BB-94 or TIMP-2 induced accumulation of syndecan-1 on the cell surface, concomitant with further retardation of cell migration. Substitution of Gly245 of syndecan-1 with Leu significantly reduced shedding from HT1080/SDC cells and cell migration. These results suggest that the shedding of syndecan-1 promoted by MT1-MMP through the preferential cleavage of Gly245-Leu246 peptide bond stimulates cell migration.  相似文献   

10.
In order to investigate the anti-angiogenic activity of shark TIMP-3 (sTIMP-3) in endothelial cells, angiogenic assays including in vitro invasion assay, migration assay, zymogram assay and tube formation assay were performed. We observed that the overexpression of sTIMP-3 decreased the invasive capacity by about 70%, the migratory activity by about 50% and the production of gelatinase A in bovine aortic endothelial cells (BAECs). In addition, the overexpression of sTIMP-3 interfered with the formation of capillary-like network in endothelial cells. We also examined whether sTIMP-3 shows the anti-invasive activity in cancer cells. We found that the overexpression of sTIMP-3 diminished the invasive ability of the human fibrosarcoma HT1080 cells by about 40%. Also, the production of specific gelatinases was suppressed in the cancer cells. Therefore, we propose that sTIMP-3 acts as the inhibitor of angiogenesis in endothelial cells and the suppressor of tumor invasion in human fibrosarcoma HT1080 cells.  相似文献   

11.
12.
13.
14.
In order to define the role of As2O3 in regulating the tumor cell invasiveness, the effects of As2O3 on secretion of matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA), and in vitro invasion of HT1080 human fibrosarcoma cells were examined. As2O3 inhibited cell adhesion to the collagen matrix in a concentration dependent manner, whereas the same treatment enhanced cell to cell interaction. In addition, As2O3 inhibited migration and invasion of HT1080 cells stimulated with phorbol 12-myristate 13-aceate (PMA), and suppressed the expression of MMP-2, -9, membrane type-1 MMP, uPA, and uPA receptor (uPAR). In contrast, As2O3 increased the expression of tissue inhibitor of metalloproteinase (TIMP)-1 and PA inhibitor (PAI)-1, and reduced the MMP-2, -9, and uPA promoter activity in the presence and absence of PMA. Furthermore, the promoter stimulating and DNA binding activity of nuclear factor-kappaB (NF-kappaB) was blocked by As2O3, whereas the activator protein-1 activity was unchanged. Pretreatment of the cells with N-acetyl-L-cysteine (NAC) significantly prevented suppression of MMPs and uPA secretion, DNA binding activity of NF-kappaB, and in vitro invasion of HT1080 cells by As2O3, suggesting a role of reactive oxygen species (ROS) in this process. These results suggest that As2O3 inhibits tumor cell invasion by modulating the MMPs/TIMPs and uPA/uPAR/PAI systems of extracellular matrix (ECM) degradation. In addition, the generation of ROS and subsequent suppression of NF-kappaB activity by As2O3 might partly be responsible for the phenomena. Overall, As2O3 shows potent activity controlling tumor cell invasiveness in vitro.  相似文献   

15.
16.
To identify drivers of sarcoma cancer stem-like cells (CSCs), we compared gene expression using RNA sequencing between HT1080 fibrosarcoma and SK-LMS-1 leiomyosarcoma spheroids (which are enriched for CSCs) compared with the parent populations. The most overexpressed survival signaling-related gene in spheroids was phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), a regulatory subunit of PI3K, which functions in tumorigenesis and metastasis. In a human sarcoma microarray, PIK3R3 was also overexpressed by 4.1-fold compared with normal tissues. PIK3R3 inhibition using shRNA in the HT1080, SK-LMS-1, and DDLS8817 dedifferentiated liposarcoma in spheroids and in CD133+ cells (a CSC marker) reduced expression of CD133 and the stem cell factor Nanog and blocked spheroid formation by 61–71%. Mechanistic studies showed that in spheroid cells, PIK3R3 activated AKT and ERK signaling. Inhibition of PIK3R3, AKT, or ERK using shRNA or inhibitors decreased expression of Nanog, spheroid formation by 68–73%, and anchorage-independent growth by 76–91%. PIK3R3 or ERK1/2 inhibition similarly blocked sarcoma spheroid cell migration, invasion, secretion of MMP-2, xenograft invasion into adjacent normal tissue, and chemotherapy resistance. Together, these results show that signaling through the PIK3R3/ERK/Nanog axis promotes sarcoma CSC phenotypes such as migration, invasion, and chemotherapy resistance, and identify PIK3R3 as a potential therapeutic target in sarcoma.Subject terms: Cancer stem cells, Oncogenes, Sarcoma  相似文献   

17.
Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.  相似文献   

18.
Rho family proteins are constitutively activated in the highly invasive human fibrosarcoma HT1080 cells. We now investigated the specific roles of Rac1 and Rac2 in regulating morphology, F-actin organization, adhesion, migration, and chemotaxis of HT1080 cells. Downregulation of Rac1 using specific siRNA probes resulted in cell rounding, markedly decreased spreading, adhesion, and chemotaxis of HT1080 cells. 2D migration on laminin-coated surfaces in contrast was not markedly affected. Selective Rac2 depletion did not affect cell morphology, cell adhesion, and 2D migration, but significantly reduced chemotaxis. Downregulation of both Rac1 and Rac2 resulted in an even more marked reduction, but not complete abolishment, of chemotaxis indicating distinct as well as overlapping roles of both proteins in chemotaxis. Rac1 thus is selectively required for HT1080 cell spreading and adhesion whereas Rac1 and Rac2 are both required for efficient chemotaxis.  相似文献   

19.
Stem cell‐conditioned medium (CM), which contains angiogenic factors that are secreted by stem cells, represents a potential therapy for ischemic diseases. Along with stem cells, tumor cells also secrete various angiogenic factors. Here, tumor cells as a cell source of CM for therapeutic angiogenesis was evaluated and the therapeutic efficacy of tumor cell CM in mouse hindlimb ischemia models was demonstrated. CM obtained from a human fibrosarcoma HT1080 cell line culture was compared with CM obtained from a human bone marrow‐derived mesenchymal stem cell (MSC) culture. HT1080 CM contained higher concentrations of angiogenic factors compared with MSC CM, which was attributable to the higher cell density that resulted from a much faster growth rate of HT1080 cells compared with MSCs. For use in in vitro and in vivo angiogenesis studies, HT1080 CM was diluted such that HT1080 CM and MSC CM would have the same cell number basis. The two types of CMs induced the same extent of human umbilical vein endothelial cell (HUVEC) proliferation in vitro. The injection of HT1080 CM into mouse ischemic limbs significantly improved capillary density and blood perfusion compared with the injection of fresh medium. Although the therapeutic outcome of HT1080 CM was similar to that of MSC CM, the preparation of CM by tumor cell line culture would be much more efficient due to the faster growth and unlimited life‐time of the tumor cell line. These data suggest the potential application of tumor cell CM as a therapeutic modality for angiogenesis and ischemic diseases. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:456–464, 2016  相似文献   

20.
Vasculogenic mimicry (VM) promotes tumor migration, metastasis, and invasion in various types of cancer, but the relationship between VM and these phenotypes remains undefined. In this study, we examined carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) as a novel target of VM. We found that ectopic expression of CEACAM1 in HT1080 human fibrosarcoma cells suppressed the formation of a VM-like network. Further, cell migration and proliferation were abated by the introduction of CEACAM1 into HT1080 cells. Conversely, knockout (KO) of the CEACAM1 gene in SK-MEL-28 melanoma cells, which normally express high levels of CEACAM1, inhibited formation of a VM-like network, which was covered on reintroduction of CEACAM1. These results suggest that CEACAM1 differentially regulates formation of the VM-like network between cancer cell types and implicate CEACAM1 as a novel therapeutic target in malignant cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号