首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang Y  Cheung YH  Yang Z  Chiu JF  Che CM  He QY 《Proteomics》2006,6(8):2422-2432
Dioscin, extracted from the root of Polygonatum zanlanscianense pamp, exhibits cytotoxicity towards human myeloblast leukemia HL-60 cells. Proteomic analysis revealed that the expression of mitochondrial associated proteins was substantially altered in HL-60 cells corresponding to the dioscin treatment, suggesting that mitochondria are the major cellular target of dioscin. Mitochondrial functional studies validated that mitochondrial apoptotic pathway was initiated by dioscin treatment. Changes in proteome other than mitochondrial related proteins implicate that other mechanisms were also involved in dioscin-induced apoptosis in HL-60 cells, including the activity impairment in protein synthesis, alterations of phosphatases in cell signaling, and deregulation of oxidative stress and cell proliferation. Current study of protein alterations in dioscin-treated HL-60 cells suggested that dioscin exerts cytotoxicity through multiple apoptosis-inducing pathways.  相似文献   

2.
3.
Zhu XF  Liu ZC  Xie BF  Li ZM  Feng GK  Xie HH  Wu SJ  Yang RZ  Wei XY  Zeng YX 《Life sciences》2002,70(11):1259-1269
Annonaceous acetogenins have potent antitumor effect in vitro and in vivo. Squamocin is one of the annonaceous acetogenins and has been reported to have antiproliferative effect on cancer cells. Our results from this study showed that squamocin inhibited proliferation of HL-60 cells with IC50 value of 0.17 microg/ml and induced apoptosis of HL-60 cells. Investigation of the mechanism of squamocin-induced apoptosis revealed that treatment of HL-60 cells with squamocin resulted in extensive nuclear condensation. DNA fragmentation, cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and induction of caspase-3 activity. Pretreatment of HL-60 cells with caspase-3 specific inhibitor DEVD-CHO prevented squamocin-induced DNA fragmentation, PARP cleavage and cell death. The expression levels of protein bcl-2, bax have no change in response to squamocin treatment in HL-60 cells, whereas stress-activated protein kinase (SAPK/JNK) was activated after treatment with squamocin in HL-60 cells. These results suggest that apoptosis of HL-60 cells induced by squamocin requires caspase-3 activation and is related to SAPK activation.  相似文献   

4.
We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells.  相似文献   

5.
Opioids play a role in the apoptosis machinery. We studied the induction of apoptosis in endomorphin 1 (EM1) and endomorphin 2 (EM2), 2 newly isolated endogenous mu-opioid receptor agonists. These endomorphins were able to reduce the viability of cultured HL-60 cells. The antiproliferative properties of endomorphins appeared to be attributable to their induction of apoptotic cell death as determined by ultrastructural change, internucleosomal DNA fragmentation, and increased proportion of the subdiploid cell population. To elucidate molecular events in the apoptosis, protein expressions of Bcl-2, Bax, Fas, and FasL were measured by western blotting using specific antibodies in HL-60 cells. The level of Bcl-2 indicated down-regulation, but the Bax, Fas, and FasL expression showed up-regulation as compared with the untreated control cells. These data support the idea that endomorphins induce apoptosis in HL-60 cells through the activation of the Bcl-2-Bax and the Fas-FasL pathway. We suggest that endomorphins may play an important role in the regulation of tumor cell death.  相似文献   

6.
This study was to identify the signaling pathways for the induction of HL-60 cell apoptosis by Cordyceps sinensis mycelium extract (CSME). CSME at 25 mug/ml induced nuclear fragmentation and DNA degradation, two hallmark events of apoptosis, in the HL-60 cells within 12-24 hrs of treatment. Concomitantly, several major events in the mitochondrial signal pathway occurred, including the loss of MTP (DeltaPsi(m)), cytochrome c release into the cytoplasm, the decrease in Bcl-2 protein level, the translocation of Bax protein from cytoplasm into mitochondria, and the activation of caspase-2, -3, and -9, but caspase-8, the initiator caspase in the death receptor pathway, was not activated. These results suggest that CSME induces apoptosis in HL-60 cell through the mitochondrial pathway rather than the death receptor pathway.  相似文献   

7.
The efficacy of anticancer agents significantly depends on the differential susceptibility of undifferentiated cancer cells and differentiated normal cells to undergo apoptosis. We previously found that enhanced expression of RPS3a/nbl, which apparently encodes a ribosomal protein, seems to prime cells for apoptosis, while suppressing such enhanced expression triggers cell death. The present study found that HL-60 cells induced to differentiate by all-trans retinoic acid did not undergo apoptosis following treatment with actinomycin D whereas undifferentiated HL-60 cells were highly apoptosis-susceptible, confirming earlier suggestions that differentiated cells have diminished apoptosis-susceptibility. Undifferentiated HL-60 cells highly expressed RPS3a/nbl whereas all-trans retinoic acid -induced differentiated cells exhibited markedly reduced levels, suggesting that apoptosis-resistance of differentiated cells could be due to low RPS3a/nbl expression. Down-regulation of enhanced RPS3a/nbl expression was also observed in cells induced to differentiate with the retinoid 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl)-1- propenyl]benzoic acid without any significant induction of cell death. While down-regulation of RPS3a/nbl expression during differentiation did not apparently induce apoptosis, RPS3a/nbl antisense oligomers triggered death of undifferentiated HL-60 cells, but not of retinoid-induced differentiated cells. It therefore seems that while down-regulation of enhanced RPS3a/nbl expression can induce apoptosis in undifferentiated cells, down-regulation of enhanced RPS3a/nbl expression during differentiation occurs independently of apoptosis, and could be regarded as reverting the primed condition to the unprimed (low RPS3a/nbl) state.  相似文献   

8.
Tripterygium hypoglaucum (levl.) Hutch (Celastraceae) (THH) root is a Chinese medicinal herb commonly used for treating autoimmune diseases. In the present study, alkaloids of THH were prepared and their cytotoxicity against the HL-60 cell was investigated. THH-induced apoptosis was observed using flow cytometry, confocal fluorescence microscope, and DNA laddering and caspase assays. The molecular mechanism involved in the induction of HL-60 cell apoptosis by THH alkaloids was examined using cDNA microarrays containing 3000 human genes derived from a leukocyte cDNA library. Sixteen genes were identified to be differentially expressed in HL-60 cells upon THH treatment. Several genes related to the NF-kappaB signaling pathway and cell apoptosis (such as NFKBIB, PRG1 and B2M) were up-regulated. In addition, c-myc binding protein and apoptosis-related cysteine proteases caspase-3 and caspase-8 were also regulated. The changes in c-Myc RNA expression and c-myc protein level were further confirmed by RT-PCR and Western blot analysis. The results demonstrated that THH alkaloids induced apoptosis of HL-60 cells though c-myc and NF-kappaB signaling pathways.  相似文献   

9.
Vitamin K2 (menaquinone-4: VK2) is a potent inducer for apoptosis in leukemia cells in vitro. HL-60bcl-2 cells, which are derived from a stable transfectant clone of the human bcl-2 gene into the HL-60 leukemia cell line, show 5-fold greater expression of the Bcl-2 protein compared with HL-60neo cells, a control clone transfected with vector alone. VK2 induces apoptosis in HL-60neo cells, whereas HL-60bcl-2 cells are resistant to apoptosis induction by VK2 but show inhibition of cell growth along with an increase of cytoplasmic vacuoles during exposure to VK2. Electron microscopy revealed formation of autophagosomes and autolysosomes in HL-60bcl-2 cells after exposure to VK2. An increase of acid vesicular organelles (AVOs) detected by acridine orange staining for lysosomes as well as conversion of LC3B-I into LC3B-II by immunoblotting and an increased punctuated pattern of cytoplasmic LC3B by fluorescent immunostaining all supported induction of enhanced autophagy in response to VK2 in HL-60bcl-2 cells. However, during shorter exposure to VK2, the formation of autophagosomes was also prominent in HL-60neo cells although nuclear chromatin condensations and nuclear fragments were also observed at the same time. These findings indicated the mixed morphologic features of apoptosis and autophagy. Inhibition of autophagy by either addition of 3-methyladenine, siRNA for Atg7, or Tet-off Atg5 system all resulted in attenuation of VK2-incuded cell death, indicating autophagy-mediated cell death in response to VK2. These data demonstrate that autophagy and apoptosis can be simultaneously induced by VK2. However, autophagy becomes prominent when the cells are protected from rapid apoptotic death by a high expression level of Bcl-2.  相似文献   

10.
A ginseng polysaccharide was extracted, purified, and modified by nitric acid-selenious acid (HNO3-H2SeO3) method to yield one selenylation-modified polysaccharide (sGP). We reported for the first time the anticancer potential of sGP on the human promyelocytic leukemia HL-60 cell line and evaluated its relevant underlying mechanism. Our results showed that sGP markedly inhibited the growth of HL-60 cells via induction of apoptosis. The event of apoptosis was accompanied by the formation of apoptotic bodies; the release of cytochrome c; loss of mitochondrial membrane potential; and activation of caspase-9, caspase-3, and cleavage of poly ADP ribose polymerase (PARP) in HL-60 cells. In addition, western blot analysis showed that sGP inhibited antiapoptotic Bcl-2 protein expression and increased proapoptotic Bax protein expression in cells under identical conditions. Together, our study suggests that sGP induces apoptosis of HL-60 cells through the mitochondrial-dependent pathway.  相似文献   

11.
Previous studies revealed that 1,25-dihydroxyvitamin D(3) (calcitriol)-induced differentiation of human promyelocytic leukemia cells leads to an increased resistance of the cells to apoptosis-inducing agents. However many attempts were made to explain it, the mechanism underlying this effect still remains unclear. Our results suggest that the acquired resistance to apoptosis-inducing agents in HL-60 cells is not mediated by the CD95 receptor/ligand system. The expression of CD95 on the surface of HL-60 cells is very low and does not change during the calcitriol-induced differentiation of HL-60 cells. Studies presented here provide a strong indication that this receptor is unable to transmit the death signal in either differentiated or undifferentiated HL-60 cells. We therefore asked if evading apoptosis by differentiated human leukemia HL-60 cells may be caused by their increased sensitivity to growth factors contained in fetal calf serum. This study demonstrates that HL-60 promyelocytic leukemia cells, differentiated by exposure to calcitriol, undergo apoptosis in serum-free conditions. As low as 1% of fetal calf serum is enough to prevent cell death of differentiated HL-60 cells. The ability of 1% fetal calf serum to prevent apoptosis can be blocked by the specific inhibitor of phosphatidylinositol 3-kinase, LY294002. We then tried to find out which component of fetal calf serum may be able to prevent serum-free cell death of differentiated cells. It appeared that serum-free cell death of differentiated HL-60 cells is reversed by addition of 10 microM insulin to the culture medium. The antiapoptotic activity of insulin can be inhibited by LY294002. Moreover, insulin increases the viability of differentiated, but not of undifferentiated, HL-60 cells.  相似文献   

12.
Iron is an essential element for the neoplastic cell growth, and iron chelators have been tested for their potential anti-proliferative and cytotoxic effects. To determine the mechanism of cell death induced by iron chelators, we explored the pathways of the three structurally related mitogen-activated protein (MAP) kinase subfamilies during apoptosis induced by iron chelators. We report that the chelator deferoxamine (DFO) strongly activates both p38 MAP kinase and extracellular signal-regulated kinase (ERK) at an early stage of incubation, but slightly activates c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) at a late stage of incubation. Among three MAP kinase blockers used, however, the selective p38 MAP kinase inhibitor SB203580 could only protect HL-60 cells from chelator-induced cell death, indicating that p38 MAP kinase serves as a major mediator of apoptosis induced by iron chelator. DFO also caused release of cytochrome c from mitochondria and induced activation of caspase 3 and caspase 8. Interestingly, treatment of HL-60 cells with SB203580 greatly abolished cytochrome c release, and activation of caspase 3 and caspase 8. Collectively, the current study reveals that p38 MAP kinase plays an important role in iron chelator-mediated cell death of HL-60 cells by activating downstream apoptotic cascade that executes cell death pathway.  相似文献   

13.
Exposure of HL-60 cells to 1,25-dihydroxyvitamin D(3) (calcitriol) induces their differentiation into monocytes. This terminal differentiation is associated with acquired resistance to many proapoptotic stimuli. Here we show that differentiated HL-60 cells undergo apoptosis upon curcumin treatment although they retain resistance to apoptosis induced by a topoisomerase poison - etoposide. Curcumin induced changes of nuclear morphology, DNA fragmentation, release of cytochrome c as well as caspase activation in both differentiated and undifferentiated cells. Experiments performed in other laboratories suggested that curcumin initiates apoptosis by DNA damage that results from topoisomerase II poisoning. We measured gammaH2AX expression, a marker of DNA double strand breaks, in both undifferentiated and differentiated HL-60 cells treated with curcumin or etoposide. In etoposide-treated undifferentiated cells early gammaH2AX expression correlated with initiation phase of apoptosis. In contrast, in curcumin-treated cells gammaH2AX expression correlated with apoptotic DNA fragmentation, which is characteristic for the execution phase of apoptosis. Our experiments show that curcumin overcomes the resistance of calcitriol-differentiated HL-60 cells to DNA-damage-induced apoptosis by activating other cell signaling pathways leading to cell death of HL-60.  相似文献   

14.
Huang ST  Yang RC  Chen MY  Pang JH 《Life sciences》2004,75(3):339-351
Phyllanthus urinaria (P. urinaria), a widely used herb medicine, was tested for the anticancer effect on human myeloid leukemia cells in this study. The water extract of P. urinaria induced the apoptosis of HL-60 cells as demonstrated by morphological change, DNA fragmentation and increased caspase-3 activity. However, normal human peripheral mononuclear cells remained viable under the same treatment. The P. urinaria-induced apoptosis of HL-60 cells was associated with the increased Bax gene expression and decreased Bcl-2 gene expression. In addition, the gene expressions of Fas receptor and Fas ligand, but not p53, were also induced in HL-60 cells dose- and time-dependently. The inhibitor of ceramide synthase, fumonisin B1, completely suppressed the apoptosis induced by P. urinaria and this inhibitory effect of fumonisin B1 could be eliminated by the addition of ceramide. It indicated that the activity of ceramide synthase is critical for the P. urinaria-induced apoptosis in HL-60 cells. The P. urinaria-induced apoptosis in HL-60 cells is mediated through a ceramide-related pathway.  相似文献   

15.
Haplophytin-A (10-methoxy-2,2-dimethyl-2,6-dihydro-pyrano[3,2-c]quinolin-5-one), a novel quinoline alkaloid, was isolated from the Haplophyllum acutifolium. In this study, we investigated the effect of haplophytin-A on the apoptotic activity and the molecular mechanism of action in human promyelocytic leukemia HL-60 cells. Treatment with haplophytin-A (50 μM) induced classical features of apoptosis, such as, DNA fragmentation, DNA ladder formation, and the externalization of annexin-V-targeted phosphatidylserine residues in HL-60 cells. In addition, haplophytin-A triggered the activations of caspase-8, -9, and -3, and the cleavage of poly (ADP-ribose) polymerase (PARP) in HL-60 cells. In addition, haplophytin-A caused the loss of mitochondrial membrane potential (ΔΨm) and the release of cytochrome c and Smac/DIABLO to the cytosol, and modulated the expression levels of Bcl-2 family proteins. We further demonstrated that knockdown of caspase-8 using its siRNA inhibited the mitochondrial translocation of tBid, the activations of caspase-9 and caspase-3, and subsequent DNA fragmentation by haplophytin-A. Furthermore, haplophytin-A-induced the formation of death-inducing signaling complex (DISC) and then activated caspase-8 in HL-60 cells. During haplophytin-A-induced apoptosis, caspase-8-stimulated tBid provide a link between the death receptor-mediated extrinsic pathway and the mitochondria- mediated intrinsic pathway. Taken together, these results suggest that the novel compound haplophytin-A play therapeutical role for leukemia via the potent apoptotic activity through the extrinsic pathway, involving the intrinsic pathway.  相似文献   

16.
We studied the mechanism by which the human granulocytic ehrlichiosis (HGE) agent induces programmed cell death (apoptosis) in human promyelocytic HL-60 leukemia cells. Using several New York HGE isolates, we show that the HGE agent-elicited apoptosis is accompanied by increased processing of nuclear enzyme poly(ADP-ribose) polymerase (PARP), concurrent with a noticeable increase in caspase 3 activities. A marked increase in the amounts of the signaling molecule ceramide but not of diacylglycerol was also observed in HGE agent-infected HL-60 cells, compared with the amounts in uninfected controls. Simultaneous or prior treatment of infected HL-60 cells with the ceramide synthase inhibitor fumonisin B1 did not affect the magnitude of infection by the intracellular pathogen, as determined by both the presence of morulae and the expression of its outer surface membrane protein, p44. These results suggest that the observed changes in ceramide are generated through the sphingomyelinase pathway and not by way of de novo synthesis of ceramide. We also assayed for changes in intracellular hydrogen peroxide and show that the HGE agent causes a decrease in its concentrations in infected cells.  相似文献   

17.
The induction of apoptotic cell death is a significant mechanism of tumor cells under the influence of radio-/chemotherapy, and resistance to these treatments has been linked to some cancer cell lines with a low propensity for apoptosis. The present study aimed to investigate the enhanced effects and mechanisms in apoptosis and the cycle distribution of HL-60 cells, a human leukemia cell line lacking a functional p53 protein, after combination treatment with arsenic trioxide (ATO) and irradiation (IR). Our results indicated that combined treatment led to increased cytotoxicity and apoptotic cell death in HL-60 cells, which was correlated with the activation of cdc-2 and increased expression of cyclin B, the induction of intracellular reactive oxygen species (ROS) generation, the loss of mitochondria membrane potential, and the activation of caspase-3. The combined treatment of HL-60 cells pre-treated with Z-VAD or NAC resulted in a significant reduction in apoptotic cells. In addition, activation of JNK and p38 MAPK may be involved in combined treatment-mediated apoptosis. The data suggest that a combination of IR and ATO could be a potential therapeutic strategy against p53-deficient leukemia cells.  相似文献   

18.
Zhang M  Zhang HQ  Xue SB 《Cell research》2000,10(3):213-220
Apoptosis manifests in two major execution programs downstream of the death signal:the caspase pathway and organelle dysfunction.An important antiapoptosis factor,Bcl-2 protein,contributes in caspase pathway of apoptosis.Calcium,an important intracellular signal element in cells,is also observed to have changes during apoptosis,which maybe affected by Bcl-2 protein.We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells,there‘s change of intracellular calcium distribution,oving from cytoplast especially Golgi‘s apparatus to nucleus and accumulating there with the highest concentration.We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells,which can be inhibited by overexpression of Bcl-2 protein.No sign of apoptosis or intracellular calcium movement from Golgi‘s apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO,a specific inhibitor of caspase-3.The results indicate that activated caspase-2 can promote the movement of intracellular calcium from Golgi‘s apparatus to nucleus,and the process is inhibited by Ac-DEVD-CHO(inhibitor of caspase-3),and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase-3.Calcium relocalization in apoptosis seems to be irreversible,which is different from the intracellular calcium changes caused by growth factor.  相似文献   

19.
Increasing evidence suggests that aberrant activation of PI3K/Akt is involved in many human cancers, and that inhibition of the PI3K/Akt pathway might be a promising strategy for cancer treatment. Our investigation indicates that Rhabdastrellic acid-A, an isomalabaricane triterpenoid isolated from the sponge, Rhabdastrella globostellata, inhibits proliferation of HL-60 cells with an IC(50) value of 0.68mug/ml, and induces apoptosis. Rhabdastrellic acid-A also induces cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and caspase-3. Pretreatment of HL-60 cells with the caspase-3 specific inhibitor, DEVD-CHO, prevents Rhabdastrellic acid-A-induced DNA fragmentation and PARP cleavage. Activated PI3K and Akt significantly decreases after treatment with Rhabdastrellic acid-A in HL-60 cells. Expression levels of protein bcl-2, bax remain unchanged in response to Rhabdastrellic acid-A treatment in HL-60 cells. These results suggest that Rhabdastrellic acid-A inhibits PI3K/Akt pathway and induces caspase-3 dependent-apoptosis in HL-60 human leukemia cells.  相似文献   

20.
《Autophagy》2013,9(5):629-640
Vitamin K2 (menaquinone-4: VK2) is a potent inducer for apoptosis in leukemia cells in vitro. HL-60bcl-2 cells, which are derived from a stable transfectant clone of the human bcl-2 gene into the HL-60 leukemia cell line, show 5-fold greater expression of the Bcl-2 protein compared with HL-60neo cells, a control clone transfected with vector alone. VK2 induces apoptosis in HL-60neo cells, whereas HL-60bcl-2 cells are resistant to apoptosis induction by VK2 but show inhibition of cell growth along with an increase of cytoplasmic vacuoles during exposure to VK2. Electron microscopy revealed formation of autophagosomes and autolysosomes in HL-60bcl-2 cells after exposure to VK2. An increase of acid vesicular organelles (AVOs) detected by acridine orange staining for lysosomes as well as conversion of LC3B-I into LC3B-II by immunonoblotting and an increased punctuated pattern of cytoplasmic LC3B by fluorescent immunostaining all supported induction of enhanced autophagy in response to VK2 in HL-60bcl-2 cells. However, during shorter exposure to VK2, the formation of autophagosomes was also prominent in HL-60neo cells although nuclear chromatin condensations and nuclear fragments were also observed at the same time. These findings indicated the mixed morphologic features of apoptosis and autophagy. Inhibition of autophagy by either addition of 3-methyladenine, siRNA for Atg7, or Tet-off Atg5 system all resulted in attenuation of VK2-incuded cell death, indicating autophagy-mediated cell death in response to VK2. These data demonstrate that autophagy and apoptosis can be simultaneously induced by VK2. However, autophagy becomes prominent when the cells are protected from rapid apoptotic death by a high expression level of Bcl-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号