首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured the toxicity and mutagenicity induced in human diploid lymphoblasts by various radiation doses of X-rays and two internal emitters. [125I]iododeoxyuridine ([125I]dUrd) and [3H]thymidine ([3H]TdR), incorporated into cellular DNA. [125I]dUrd was more effective than [3H]TdR at killing cells and producing mutations to 6-thioguanine resistance (6TGR). No ouabain-resistant mutants were induced by any of these agents. Expressing dose as total disintegrations per cell (dpc), the D0 for cell killing for [125I]dUrd was 28 dpc and for [3H]TdR was 385 dpc. The D0 for X-rays was 48 rad at 37°C. The slopes of the mutation curves were approximately 75 × 10−8 6TGR mutants per cell per disintegration for [125I]dUrd and 2 × 10−8 for [3H]TdR. X-Rays induced 8 × 10−8 6TGR mutants per cell per rad. Normalizing for survival, [125I]dUrd remained much more mutagenic at low doses (high survival levels) than the other two agents. Treatment of the cells at either 37°C or while frozen at −70°C yielded no difference in cytotoxicity or mutation for [125I]dUrd or [3H]TdR, whereas X-rays were 6 times less effective in killing cells at −70°C.

Assuming that incorporation was random throughout the genome, the mutagenic efficiencies of the radionuclides could be calculated by dividing the mutation rate by the level of incorporation. If the effective target size of the 6TGR locus is 1000–3000 base pairs, then the mutagenic efficiency of [125I]dUrd is 1.0–3.0 and of [3H]TdR is 0.02–0.06 total genomic mutations per cell per disintegration. 125I disintegrations are known to produce localized DNA double-strand breaks. If these breaks are potentially lethal lesions, they must be repaired, since the mean lethal dose (D0) was 28 dpc. The observations that a single dpc has a high probability of producing a mutation (mutagenic efficiency 1.0–3.0) would suggest, however, that this repair is extremely error-prone. If the breaks need not be repaired to permit survival, then lethal lesions are a subset of or are completely different from mutagenic lesions.  相似文献   


2.
We measured the toxicity and mutagenicity induced in human diploid lymphoblasts by various radiation doses of X-rays and two internal emitters. [125I]iododeoxyuridine ([125I]dUrd) and [3H]thymidine ([3H]TdR), incorporated into cellular DNA. [125I]dUrd was more effective than [3H]TdR at killing cells and producing mutations to 6-thioguanine resistance (6TGR). No ouabain-resistant mutants were induced by any of these agents. Expressing dose as total disintegrations per cell (dpc), the D0 for cell killing for [125I]dUrd was 28 dpc and for [3H]TdR was 385 dpc. The D0 for X-rays was 48 rad at 37°C. The slopes of the mutation curves were approximately 75 × 10−8 6TGR mutants per cell per disintegration for [125I]dUrd and 2 × 10−8 for [3H]TdR. X-Rays induced 8 × 10−8 6TGR mutants per cell per rad. Normalizing for survival, [125I]dUrd remained much more mutagenic at low doses (high survival levels) than the other two agents. Treatment of the cells at either 37°C or while frozen at −70°C yielded no difference in cytotoxicity or mutation for [125I]dUrd or [3H]TdR, whereas X-rays were 6 times less effective in killing cells at −70°C.Assuming that incorporation was random throughout the genome, the mutagenic efficiencies of the radionuclides could be calculated by dividing the mutation rate by the level of incorporation. If the effective target size of the 6TGR locus is 1000–3000 base pairs, then the mutagenic efficiency of [125I]dUrd is 1.0–3.0 and of [3H]TdR is 0.02–0.06 total genomic mutations per cell per disintegration. 125I disintegrations are known to produce localized DNA double-strand breaks. If these breaks are potentially lethal lesions, they must be repaired, since the mean lethal dose (D0) was 28 dpc. The observations that a single dpc has a high probability of producing a mutation (mutagenic efficiency 1.0–3.0) would suggest, however, that this repair is extremely error-prone. If the breaks need not be repaired to permit survival, then lethal lesions are a subset of or are completely different from mutagenic lesions.  相似文献   

3.
The present experiments with [14C]-thymidine (TdR) and [3H]-bromodeoxyuridine (BrdU) using mouse jejunal crypt cells show that the upper limit of the tracer dose of TdR is about 0.5 microgram g body weight-1 and that of BrdU is about 5.0 micrograms g body weight-1. Applying these doses, the proportions of the endogenous DNA synthesis attributed to the exogenous DNA precursor are 2% and 9% respectively. For [3H]-TdR doses commonly used in cell kinetic studies this proportion is only 0.1-1.0%, a negligible quantity that does not influence the endogenous DNA synthesis. The maximum availability time of tracer doses of TdR as well as BrdU is 40 to 60 min, the majority of the precursors being incorporated after 20 min. The availability time is the same for TdR doses exceeding the tracer dose by a factor of 80, whereas it is prolonged in the case of BrdU doses exceeding the tracer dose by a factor of 50. BrdU is suitable to replace radioactively labelled TdR in short term cell kinetic studies, i.e. determination of the labelling index or of the S phase duration by double labelling. However, more studies are needed to elucidate how far BrdU can replace TdR in long term studies as shown by differences between the fraction of labelled mitoses (FLM) curves of a human renal cell carcinoma measured with BrdU and [3H]-TdR.  相似文献   

4.
The proportion of haematopoietic stem cells (CFU-s) engaged in DNA synthesis was determined by means of the [3H]-thymidine [( 3H]TdR) suicide technique during recovery of bone marrow from the damage caused by a sublethal total body irradiation. In contrast with previous reports the [3H]TdR suicide rate was not permanently increased. It was observed that CFU-s passed through S phase in synchronous waves, following a dose of irradiation of 1.5 Gy. After a dose of 2.6 Gy, there was only one initial wave of increased CFU-s sensitivity to the action of [3H]TdR. Following the depression occurring 26 hr after the irradiation with 2.6 Gy, the proportion of CFU-s killed by the [3H]TdR was permanently increased until 5-6 days after irradiation. Thereafter large differences in the [3H]TdR suicide data were observed among individual mice. Evidence was obtained that individual mice, which had been irradiated by a dose of 2.6 Gy 8-9 days before, had identical values of the CFU-s [3H]TdR suicide rate in the bone marrow from different bones of the lower extremities. The recurrence of the synchronous waves in CFU-s passage through the cell cycle was recorded when the CFU-s population regenerated to only about 10% of its normal value. These waves were obviously not related to a particular time of the day and, consequently, they did not represent the circadian rhythm. It is concluded that the synchronous waves in which CFU-s proliferation occurred reflected the action of the control mechanism on CFU-s proliferation. This mechanism should be endowed with an important systemic component besides locally operating factors.  相似文献   

5.
We describe a reproducible method for combining tritiated thymidine ([H]TdR) autoradiography with immunoperoxidase detection of bromodeoxyuridine (BrdU) in paraffin-embedded tissues. The technique has been used to examine, in mouse tongue epithelium, the inhibition of incorporation into DNA of [3H]TdR by a simultaneous injection of BrdU in the doses that both compounds are likely to be used in cell proliferation studies. The significance that this inhibition has on prolongation of autoradiograph exposure times, to ensure that all cells that incorporate [3H]TdR are scored as positive, in particular the most lightly labelled cells, has been quantified. The inhibition of uptake into DNA of [3H]TdR from 0.23 to 1.85 MBq (6.25 to 50 mu Ci) per animal, produced by a simultaneous injection of 2.5 mg BrdU shows a linear, dose-dependent relationship. Provided the injected dose (in mu Ci per animal) multiplied by the autoradiographic exposure time (in days) is greater than a value of 700, then all cells that are labelled after incorporation of [3H]TdR alone are also labelled after simultaneous double labelling, despite the latter producing a lower average grain count.  相似文献   

6.
The cellular outgrowths from three layers of rabbit and monkey aorta were used as primary cultures. Irradiation of the tissue fragments at the time of explanation resulted in a reduction in outgrowth of 50% with a dose of 200 rad, and in a reduction of over 90% with doses of 300 rad and above. When comparable cultures were irradiated after 2 months in vitro as a mature actively metabolizing but slowly proliferating cell population, radioresistance was increased. Subcultures of medial smooth muscle cells irradiated during their logarithmic growth phase showed a linear dose response in the cell number parameter up to 150 rad. A dose of 250 rad resulted in complete flattening of the growth curve, with a reduction in labeling index, after a 3-hr terminal [3H]TdR pulse. On the other hand, the labeling index indicated some recovery 3 days after irradiation in cultures receiving less than 250 rad. Under the same experimental conditions, cells derived from the intima of the same aorta showed no recovery when increase in cell numbers over time, or the number of labeled cells per area, were used as parameters. Cells derived from adventitia showed a relative increase in the number of labeled cells per area 4 and 7 days after irradiation following an initial decrease on Day 1.  相似文献   

7.
The influence of aminopterin (AP), tritiated thymidine ([3H] TdR) and "cold" thymidine (TdR) on production of chromosomal aberrations in meristematic cells of Crepis capillaris irradiated in different stages of the mitotic cycle with 300 rad of 63Co gamma-rays was studied. All the chemical treatments increased most of all the frequency of aberrations induced during two "critical periods" localized before the stage of DNA synthesis (fixation 9 h after irradiation) and before that of mitosis (4 h). Treatments with TdR and [3H]TdR increased most of all the frequency of chromatid aberrations when irradiation was performed in G1, and the frequency of gaps when irradiated in G2. Treatment with AP increased the yield of different types of aberration more uniformly. The modifying effect of the chemicals tested appeared to be independent of replicative synthesis. The "critical periods" are suggested to be the stages when regular "proof reading" and correction of spontaneous errors takes place [9,13]. In addition to this regular mechanism, radiation induces an "emergency" mechanism of repair. AP inhibits the mechanism of regular repair; in addition TdR and [3H] TdR suppress the lateral spread of primary injuries across the chromosome.  相似文献   

8.
The adult irradiated rat testis was used as a model system to confirm the existence of a spermatogonial chalone. Rats were given 330 rad whole body 60Co irradiation, a dose which selectively destroys most of the spermatogonial population except for the radioresistant As stem cells. 11 days after irradiation, when spermatogonial numbers were minimal, the rats were injected with a testicular or liver extract prepared from normal adult rats, or with saline. Each group received a total of four injections given at 4 hr intervals. 2 hr before death, the animals were injected with [3H]TdR. Testicular DNA was isolated and the incorporation of [3H]TdR was determined. The mean ± s.e. ct/min per μg DNA in rats given testicular extract (9·38 ± 0·94) was no different than in those receiving liver extract (10·43 ± 2·01) or saline (7·23 ± 0·69). Autoradiographic studies indicated that variability in counts within or between groups could be attributed to variations in the number of pre-leptotene spermatocytes which incorporated [3H]TdR for the meiotic divisions. Quantitatively, there were no differences between groups in terms of the numbers of A spermatogonia, their labelling indices, or mitotic activity. Therefore, the presence of a spermatogonial chalone could not be demonstrated using crude extracts from normal testes in this irradiated model.  相似文献   

9.
Three UV-sensitive (UVs) mutants isolated from a CHO cell line were analyzed for survival after exposure to H2O2, EMS, MMC, CCNU, X-rays and for mutation induction after UV-irradiation. The UVs mutants showed normal sensitivities to EMS and H2O2, whereas they were hypersensitive to the bifunctional alkylating agents MMC and CCNU and to hypoxic X-irradiation. Compared to parental cells, one of the UV-sensitive clones showed approximately 3- and 7-fold enhancement in the mutagenic response per unit UV dose for 6-thioguanine and ouabain resistance, respectively.  相似文献   

10.
Abstract. The present experiments with [14C]-thymidine (TdR) and [3H]-bromo-deoxyuridine (BrdU) using mouse jejunal crypt cells show that the upper limit of the tracer dose of TdR is about 0.5 µg g body weight-1 and that of BrdU is about 5·0 µg g body weight-1. Applying these doses, the proportions of the endogenous DNA synthesis attributed to the exogenous DNA precursor are 2% and 9% respectively. For [3H]-TdR doses commonly used in cell kinetic studies this proportion is only 0-1-1.0%, a negligible quantity that does not influence the endogenous DNA synthesis. The maximum availability time of tracer doses of TdR as well as BrdU is 40 to 60 min, the majority of the precursors being incorporated after 20 min. The availability time is the same for TdR doses exceeding the tracer dose by a factor of 80, whereas it is prolonged in the case of BrdU doses exceeding the tracer dose by a factor of 50. BrdU is suitable to replace radioactively labelled TdR in short term cell kinetic studies, i.e. determination of the labelling index or of the S phase duration by double labelling. However, more studies are needed to elucidate how far BrdU can replace TdR in long term studies as shown by differences between the fraction of labelled mitoses (FLM) curves of a human renal cell carcinoma measured with BrdU and [3H]-TdR.  相似文献   

11.
Unstimulated (G0) human peripheral blood lymphocytes were exposed at 37 degrees C to doses of 200 or 500 rad of X-rays delivered in two equal fractions. The dose fractions were separated by intervals of up to 7 h in the 200 rad study and up to 48 h for 500 rad. In both studies the mean levels of dicentrics and total unstable aberrations began to decline when fractions were delivered with intervals of greater than 2 h. With 200 rad the yield had decreased to an additive baseline (i.e. equal to only twice the yield of a single 100-rad fraction) by an interval of 4 h. Following 500 rad the yield declined until 8 h and then remained 20% above the additive baseline even when 48 h separated the fractions. Possible explanations for this discrepancy are discussed. In a second experiment PHA stimulated lymphocyte cultures were exposed to 2 doses of 125 rad of X-rays up to 7 h apart in an attempt to demonstrate the late peak in aberration yields originally reported by Lane [5]. Control cultures received unsplit doses of 250 rad at the time of the corresponding second 125-rad fraction. No evidence of a late peak in dicentric yield was observed. The yield remained approximately the same irrespective of the time interval between fractions but these split dose yields were significantly different from the accompanying unsplit controls.  相似文献   

12.
The effect of prior incubation with [3H]thymidine on survival and mutagenesis after X-irradiation of human lymphocytes was studied by incubating lymphocytes with 0.001-1.0 mu Ci/ml [3H]thymidine for 6 h at 37 degrees C and then irradiating with 150 or 300 rad. Survival was measured using lymphocyte cloning and mutagenesis was measured using 6-thioguanine selection to detect clones mutated at the hypoxanthine phosphoribosyltransferase locus. [3H]Thymidine alone had no effect on survival or mutagenesis and X-radiation alone produced the expected decrease in survival and increase in mutations. [3H]Thymidine prior to X-radiation had no effect on lethality of X-radiation but at concentrations of 0.1 and 1.0 mu Ci/ml produced a significant decrease in the number of mutations induced after both 150 and 300 rad. The results suggest that ionizing radiation, produced by disintegration of 3H, reduces the mutagenic effect of a subsequent exposure to ionizing radiation by induction of a system which prevents or repairs a restricted class of radiation damage.  相似文献   

13.
High specific activity tritiated thymidine (HSA-[3H]TdR) and colcemid were given in cytotoxic doses and regimens to B6CF1/Anl mice. The number of cells per intestinal crypt was reduced by the S-phase-specific (HSA-[3H]TdR and the metaphase blocking and cytotoxic effect of multiple injections of colcemid. In 50-day-old mice, the cytotoxic effect of multiple injections of colcemid reduced both the number of cells per crypt and the clonogenic cell survival. However, the number of surviving intestinal clonogenic or stem cells, assayed by the microcolony technique, did not change in 110--130-day old mice. These data suggest that most of the cells at risk from these cytotoxic agents are not clonogenic in adult 110--130-day old mice but are the cells in amplification division. However, since the stem cells of young mice are more susceptible to colcemid, they are apparently in a more rapid cell cycle than those of older mice. The clonogenic cell survival measured in 110--130-day old mice after a single radiation dose of 14 Gy (1400 rad) responded in a non-linear way to increasing time of continuous colcemid cytotoxicity. These data suggest that the intestinal stem cells can respond to amplification compartment cell death by a shortening of their cell cycle and thus, over time, the number of stem cells at risk to colcemid cytotoxicity increases.  相似文献   

14.
Earlier studies from this laboratory suggested that embryonic chick bones in organ culture released into the culture medium a specific inhibitor of bone cell proliferation as defined by inhibition of [3H]TdR incorporation into DNA. Dialysis and membrane ultrafiltration experiments suggested that the inhibitory substance (IS) had a molecular weight between 6000 and 14,000. However, subsequent studies on the purification of IS have revealed that the inhibitory activity in bone-conditioned medium is of lower molecular weight and has several properties in common with thymidine (TdR): (1) IS coeluted with [3H]TdR upon gel filtration chromatography on Sephadex G-10. (2) IS bound to charcoal but not to cation or anion exchange resins. (3) Bone-conditioned medium decreased incorporation of [3H]TdR into the free [3H]TdR pool of cells in monolayer culture. (4) Conditioned medium inhibited [3H]TdR incorporation into [3H]thymidine monophosphate in a reaction catalyzed by thymidine kinase. The equivalent concentration of TdR in conditioned medium as estimated by thymidine kinase assay was sufficient to account for the reduction in [3H]TdR incorporation into bone cell DNA. No evidence was found for a specific inhibitor of bone cell proliferation other than TdR. Hence we conclude that the inhibitory effect of IS is due to dilution of [3H]TdR by nonradioactive TdR. Furthermore, media conditioned by several tumor cell lines also contained a low-molecular-weight component which inhibited [3H]TdR incorporation. The results suggest that organ- and cell-conditioned media can contain significant concentrations of TdR which can artifactually inhibit [3H]TdR incorporation in cell proliferation assays.  相似文献   

15.
Clones resistant to 5-iodo-2-deoxyuridine (IUdR) were isolated from P388 cells and cultured in the absence of selective medium. Thymidine kinase assays were performed on 8 clones which had arisen spontaneously and 19 isolated after exposure to X-rays or alkylating agents. All the clones tested showed significantly reduced thymidine kinase activity relative to wild-type cultures, but none showed zero levels. 14 of these clones were tested for thymidine (TdR) uptake and all showed a marked reduction in the rate of [3H]TdR incorporation into acid soluble fractions and into DNA. 7 IUdR-resistant (IUdRr) clones were tested for revertibility as measured by growth of colonies in HAT medium. 5 of the 7 were found to revert at measurable rates either spontaneously or after a low dose of mutagen.Thymidine kinase activity was also measured in 8 thymidine resistant P388 clones (TdRr). Initial rates of thymidine phosphorylation were not significantly altered in 5 of the 8 clones tested but significantly lower amounts of phosphorylated products were observed in 6 of the 8 clones. [3H]TdR uptake was reduced in 9 of 12 clones tested, and 2 of them showed no corresponding reduction in the thymidine kinase activity, suggesting the occurence of mutants with altered permeability for thymidine.IUdR resistant L5178Y clones could not be isolated. Thymidine resistant L5178Y clones were similar to TdRr P388 clones, i.e. they showed changes in initial rates of thymidine kinase activity and reduced accumulation of phosphorylated products. Only one clone could be shown to be a membrane mutant. These results are discussed in relation to the genetic nature of the thymidine kinase locus in the two cell lines.  相似文献   

16.
Relatively little is known about the mutagenicity of C24H14 PAH, a diverse group of five- and six-ring PAH, some of which are present at trace levels in the environment. To better understand the mutagenicity of this class of compounds, 11 C24H14 PAH, including benzo[a]perylene, benzo[b]perylene, dibenzo[a,e]fluoranthene, dibenzo[a,f]fluoranthene, dibenzo[j,l]fluoranthene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, dibenzo[e,l]pyrene, naphtho[1,2-b]fluoranthene, naphtho[2,3-a]pyrene, and naphtho[2,3-e]pyrene, were tested in a mutagenicity assay based on human h1A1v2 cells. h1A1v2 cells are a line of human B-lymphoblastoid cells that have been engineered to express cytochrome P4501A1 (CYP1A1), an enzyme capable of metabolizing promutagenic PAH. Mutagenicity was measured at the thymidine kinase (tk) locus following a 72-h exposure period. Our results show that nine of the compounds were mutagenic. Benzo[a]perylene, dibenzo[a,e]fluoranthene, dibenzo[a,i]pyrene, and naphtho[2,3-a]pyrene were the most potent mutagens, having minimum mutagenic concentrations (MMC) (i.e., the dose at which the induced response was twice that of the negative controls) in the 1-5 ng/ml range. Benzo[b]perylene, dibenzo[a,h]pyrene, dibenzo[a,f]fluoranthene, and naphtho[2,3-e]pyrene were somewhat less potent mutagens, having MMC in the 10-30 ng/ml range. Dibenzo[e,l]pyrene, which had an MMC of 280 ng/ml, was the least potent mutagen. Dibenzo[j,l]fluoranthene and naphtho[1,2-b]fluoranthene were not mutagenic at the doses tested (1-3000 ng/ml). The most mutagenic compounds were also quite toxic. At the highest doses tested, benzo[a]perylene, dibenzo[a,e]fluoranthene, dibenzo[a,i]pyrene, dibenzo[a,h]pyrene, and dibenzo[a,f]fluoranthene induced > 60% killing, and naphtho[2,3-a]pyrene and naphtho[2,3-e]pyrene induced > 50% killing. Benzo[b]perylene, dibenzo[e,l]pyrene, dibenzo[j,l]fluoranthene, and naphtho[1,2-b]fluoranthene induced < 50% killing at the highest doses tested. Comparing these results to a previous study in which nine other C24H14 PAH were tested for mutagenicity in this same assay, it was found that dibenzo[a]pyrene isomers were generally more mutagenic than the other groups of C24H14 PAH tested. These observations are discussed with emphasis given to identifying C24H14 PAH that may be important environmental mutagens.  相似文献   

17.
The effect of high dose thymidine (TdR) pretreatment on the action of 5-fluorouracil (5-FU) on rRNA was measured in regenerating liver after partial hepatectomy. TdR did not enhance the inhibitory or non-inhibitory effects of 5-FU on the synthesis of rRNA and poly(A)RNA, respectively. However, TdR pretreatment intensified the effect of 5-FU on interference with the processing of rRNA from precursor rRNA. The distribution of [3H]5FU, as well as [3H]-orotic acid was enhanced in the 2′-0-methylated sequences of rRNA following pretreatment with TdR. Thus, the combination regimen of TdR plus 5-FU resulted in enhanced interference with the processing of rRNA.  相似文献   

18.
Average doses to rat tissues from the ingestion of 2-[14C]thymidine were compared with those from methyl-[3H]thymidine or 6-[3H]thymidine. Among the three precursors, [14C]thymidine gave the highest dose to spleen and small intestine. The doses to other tissues from [14C]thymidine were almost the same or lower as compared with those from [3H]thymidine, irrespective of the 9 times higher beta-ray energy of 14C than that of 3H. In the case of [14C]thymidine, most of the dose was given by radioactivity incorporated into the organic tissue constituents (non-volatile radioactivity). In the case of [3H]thymidine, however, the dose contributions by non-volatile radioactivity were very small and the major contributions were rather from volatile radioactivity (3HHO), formed by degradation of [3H]thymidine. No significant difference in their total doses was found between the two [3H]precursors, but the dose from non-volatile radioactivity alone was 2-3 times higher with methyl-[3H]thymidine than with 6-[3H]thymidine. Estimates of the dose to cell nuclei in various tissues after the ingestion of [3H]thymidine were also made in order to predict more precisely possible radiation hazards.  相似文献   

19.
Comparative analysis of different approaches to investigate cell kinetics   总被引:2,自引:0,他引:2  
The potential of different methods to investigate proliferative activity of cell populations was analysed for non-Hodgkin's lymphomas. Cells in S phase and all cycling cells were determined on cell suspensions obtained from fresh lymph node material by [3H]-thymidine autoradiography [( 3H]TdR LI), a monoclonal antibody to bromodeoxyuridine (BrdU LI), and the monoclonal antibody Ki67. A good correlation was observed between the values of [3H]TdR LI and BrdU LI (rs = 0.90; P less than 0.01), [3H]TdR LI and S phase (rs = 0.62; P less than 0.01) and [3H]TdR LI and Ki67 (rs = 0.64; P less than 0.01) in individual lymphomas. Using the median values obtained from the different approaches as cut-off points to define slowly and rapidly proliferating tumours, the best agreement was observed between [3H]TdR LI and BrdU LI (91%) and poorer agreements, even though statistically significant, were observed between [3H]TdR LI and S phase (73%) or Ki67 (76%). In conclusion, the kinetic information derived from different approaches was more or less concordant and newly proposed approaches should be directly and carefully verified for their prognostic relevance before using them as alternatives to conventional methods.  相似文献   

20.
We have evaluated the effect of X irradiation on the mesenchymal tissue growth (blood capillaries and stromal cells) in an angiogenesis system in the mouse. This was accomplished by implanting a polyvinyl alcohol sponge disc in the subcutis of the thorax, and quantifying the extent of growth reduction of capillaries and stromal cells following graded doses of X rays. The sponge disc contained a centrally located pellet impregnated with 20 micrograms of epidermal growth factor and coated with a thin film of slow-releasing compound. Total growth of vessels and fibroblasts was determined by morphometric analysis of histologic sections. The incorporation of [3H]TdR was measured during a 24-h period. A dose-response relationship was observed when X irradiation was given on Day 11 after implantation, with the disc removed on Day 20. A single dose of 15 Gy reduced both the rate of incorporation of [3H]TdR and the total growth area. These and previous observations point to endothelial cells as important targets of ionizing radiation in the stroma, especially during the period of active proliferation of these cells, induced by growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号