首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alves MJ  Colli W 《IUBMB life》2007,59(4-5):274-279
Both invasion of the host cell by T. cruzi and its establishment into the mammalian host are critical steps. In this review, the adhesion step and the intracellular survival in non-professional phagocytes are particularly focused on, with special emphasis on the role of Gp85/trans-sialidase (Gp85/TS) superfamily. Excellent reviews have been published lately, some covering other aspects of T. cruzi-host interaction and will be cited instead of the original articles due to limited number of listed references.  相似文献   

2.
Trypanosoma cruzi causing Chagas' disease needs to invade host cells to complete its life cycle. Macromolecules on host cell surfaces such as laminin, thrombospondin, heparan sulfate, and fibronectin are believed to be important in mediating parasite-host cell adhesions and in the invasion process of the host cell by the parasite. The SELEX technique (systematic evolution of ligands by exponential enrichment) was used to evolve nuclease-resistant RNA ligands (aptamer = to fit) that bind with affinities of 40-400 nm to parasite receptors for the host cell matrix molecules laminin, fibronectin, thrombospondin, and heparan sulfate. After eight consecutive rounds of in vitro selection four classes of RNA aptamers based on structural similarities were isolated and sequenced. All members of each class shared a common sequence motif and competed with the respective host cell matrix molecule that was used for displacement during the selection procedure. RNA pools following seven and eight selection rounds as well as individual aptamers sharing consensus motifs were active in inhibiting invasion of LLC-MK(2) monkey kidney cells by T. cruzi in vitro.  相似文献   

3.
Regulation of immunity in Trypanosoma cruzi infection   总被引:3,自引:0,他引:3  
Immunity to T. cruzi is complex, involving among other components, antibody production, CD4+ helper cells, CD8+ T cells as both regulators and effectors of immunity, and possibly, double-negative T cells. In addition, several of these components have been implicated in pathogenesis in the chronic infection. Although the immunosuppression observed in the infection seems quite severe, it also appears to provide for a sufficient level of immune responsiveness to control the infection in most hosts. At the same time, immunosuppression may provide the regulatory control necessary to prevent massive chronic pathogenesis in all hosts. Continued study of the relative roles of lymphocyte populations and the products they secrete in immunity and pathogenesis may provide the understanding necessary to enhance immunity to T. cruzi without the feared consequence of increased pathogenesis.  相似文献   

4.
We have used glutaraldehyde-fixed target cells to study the attachment phase of cell invasion by live trypomastigotes of Trypanosoma cruzi, and determined that attachment is polarized and receptor-mediated. T. cruzi trypomastigotes bind much less efficiently to confluent epithelial cells, which are polarized, than to sparse epithelial cells. When the tight junctions of confluent epithelial cells are disrupted by removing Ca2+ from the incubation medium before glutaraldehyde fixation, binding of T. cruzi increases. T. cruzi also shows preference for attachment underneath cells or to the edges of cells. The binding occurs within a few minutes, is saturable, and is influenced by the parasite developmental stage. Fab fragment derived from monoclonal antibodies that immunoprecipitate a 160-kDa molecule present only on the surface of trypomastigotes inhibit adhesion to fixed and live cells. Future characterization of the target cell receptors for this molecule and the use of fixed target cells should facilitate studies of the mechanisms involved in the initial interaction of T. cruzi with its host cells.  相似文献   

5.
Infection of humans with the protozoan Trypanosoma cruzi leads to Chagas disease, or American trypanosomiasis, a disease that affects nearly 20 million people, and constitutes one of the largest socioeconomic burdens in Latin America. Much of the present knowledge on pathogenic mechanisms underlying T. cruzi infection comes from experimental murine models. Here, George A. DosReis reviews recent findings about the features of host cell-mediated immunity against the parasite and possible mechanisms leading to chronic infection.  相似文献   

6.
Cell-substrate adhesion during Trypanosoma cruzi differentiation   总被引:2,自引:0,他引:2       下载免费PDF全文
The transformation of Trypanosoma cruzi epimastigotes to the mammal infective metacyclic trypomastigotes (metacyclogenesis) can be performed in vitro under chemically defined conditions. Under these conditions, differentiating epimastigotes adhere to a surface before their transformation into metacyclic trypomastigotes. Scanning and transmission electron microscopy of adhered and non-adhered parasites during the metacyclogenesis process show that only epimastigotes and few transition forms are found in the first population, whereas metacyclic trypomastigotes are exclusively found in the cell culture supernatant. PAGE analysis of the [35S]methionine metabolic labeling products of adhered and non-adhered parasites shows that although most of the polypeptides are conserved, adhered parasites express specifically four polypeptides in the range of 45-50 kD with an isoelectric point of 4.8. These proteins might be involved in the adhesion process and are recognized by an antiserum against total adhered parasite proteins. This antiserum also recognized a group of 45-50 kD in the iodine-radiolabeled surface proteins of differentiating cells, providing direct evidence that these components are indeed surface antigens. The results suggest that epimastigotes must adhere to a substrate before their transformation to metacyclic trypomastigotes, being released to the medium as the metacyclogenesis process is accomplished. This could correspond to the process naturally occurring within the triatomine invertebrate host.  相似文献   

7.
8.
Human humoral immunity to hsp70 during Trypanosoma cruzi infection   总被引:4,自引:0,他引:4  
Immunologic screening of cDNA expression libraries has been widely used for the identification of DNA sequences encoding the immunologically relevant proteins of many pathogenic microorganisms. For reasons that are not entirely clear, sequences encoding 70-kDa heat shock and related proteins (hsp70), which are among the most highly conserved proteins known, have routinely been identified by this approach. Consequently, hsp70 proteins have been proposed to be involved in the autoimmune processes thought responsible for the pathogenesis of the diseases caused by some of these organisms, e.g., chronic Trypanosoma cruzi infection (Chagas' disease). Therefore, we investigated whether hsp70 might be a specific target of the human humoral immune response to T. cruzi infection, and, if so, whether humoral autoimmunity to hsp70 might play a role in pathogenesis. We found that hsp70 is indeed a major polypeptide Ag in Chagas' disease, but that the antibodies to T. cruzi hsp70 do not react with human hsp70--even though the proteins display 73% amino acid sequence identify. These results indicate that self-tolerance to hsp70 is maintained during chronic T. cruzi infection and strongly argue against a role for humoral autoimmunity to hsp70 in the pathogenesis of Chagas' disease.  相似文献   

9.
We have identified four surface 83 kDa proteins of pI values 6.3, 6.4, 6.5 and 6.6 in T. cruzi trypomastigotes which specifically bind to rat heart myoblasts. These proteins were purified by isoelectric focusing and anion-exchange chromatography in an FPLC system. These 83 kDa proteins inhibit the attachment of trypomastigotes to myoblasts in a concentration-dependent manner, indicating that these trypomastigote proteins mediate the attachment of trypomastigotes to heart myoblasts.  相似文献   

10.
Trypanosoma cruzi does not synthesize sialic acid but does contain a trans-sialidase, an enzyme capable of transferring sialic acid between host glycoconjugates and the parasite. Sialic acids are negatively charged carbohydrates attached to the terminal non-reducing end of glycoproteins and glycolipids, and their presence can dramatically influence many cell-surface recognition processes. Since sialic acids have been implicated in several ligand-receptor interactions, including the interaction of pathogenic viruses, bacteria and protozoans with their hosts, the expression of trans-sialidase and the acquisition of sialic acid by T. cruzi may be relevant to the interaction of the parasite with the host, and consequently may influence the pathobiology of Chagas disease. In this review, Sergio Schenkman and Daniel Eichinger discuss recent data about the structure and function of T. cruzi trans-sialidase.  相似文献   

11.
A direct radioligand binding technique utilizing the beta-adrenergic antagonist [3H]dihydroalprenolol was employed in the identification and characterization of Trypanosoma cruzi beta-adrenergic receptors. [3H]DHA binding was saturable (Bmax = 1.5 pmol/10(6) cells) with an apparent equilibrium dissociation constant (Kd) of 127 nM. Binding of [3H]DHA was displaced by propranolol in a concentration-dependent manner. The relative potency order of adrenergic ligands in displacing [3H]DHA binding was: propranolol greater than or equal to alprenolol greater than epinephrine. 5-Hydroxytryptamine, phentolamine and catechol had no effect. The experimental results support the suggestion that beta-adrenergic receptors are present in the pathogenic protozoa Trypanosoma cruzi.  相似文献   

12.
S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl-dependent enzyme that catalyzes an essential step in polyamine biosynthesis. The polyamines are required for cell growth, and the biosynthetic enzymes are targets for antiproliferative drugs. The function of AdoMetDC is regulated by the polyamine-precursor putrescine in a species-specific manner. AdoMetDC from the protozoal parasite Trypanosoma cruzi requires putrescine for maximal enzyme activity, but not for processing to generate the pyruvoyl cofactor. The putrescine-binding site is distant from the active site, suggesting a mechanism of allosteric regulation. To probe the structural basis by which putrescine stimulates T. cruzi AdoMetDC we generated mutations in both the putrescine-binding site and the enzyme active site. The catalytic efficiency of the mutant enzymes, and the binding of the diamidine inhibitors, CGP 48664A and CGP 40215, were analyzed. Putrescine stimulates the k(cat)/K(m) for wild-type T. cruzi AdoMetDC by 27-fold, and it stimulates the binding of both inhibitors (IC(50)s decrease 10-20-fold with putrescine). Unexpectedly CGP 48664A activated the T. cruzi enzyme at low concentrations (0.1-10 microM), while at higher concentrations (>100 microM), or in the presence of putrescine, inhibition was observed. Analysis of the mutant data suggests that this inhibitor binds both the putrescine-binding site and the active site, providing evidence that the putrescine-binding site of the T. cruzi enzyme has broad ligand specificity. Mutagenesis of the active site identified residues that are important for putrescine stimulation of activity (F7 and T245), while none of the active site mutations altered the apparent putrescine-binding constant. Mutations of residues in the putrescine-binding site that resulted in reduced (S111R) and enhanced (F285H) catalytic efficiency were both identified. These data provide evidence for coupling between residues in the putrescine-binding site and the active site, consistent with a mechanism of allosteric regulation.  相似文献   

13.
The protozoan parasite Trypanosoma cruzi is responsible for Chagas disease, a serious debilitating disease that affects millions of people in Latin America. Trypomastigotes, the infective forms, are capable of invading and replicating in different cell types. The invasion process involves a gradual recruitment and fusion of host cell lysosomes at the parasite entry site, and is regulated by intracellular free Ca2+ transients triggered by trypomastigotes in host cells. This unusual, Ca2+-dependent lysosome exocytosis pathway was recently shown to be involved in the mechanism by which mammalian cells repair lesions on their plasma membrane.  相似文献   

14.
The replication and segregation of organelles producing two identical daughter cells must be precisely controlled during the cell cycle progression of eukaryotes. In kinetoplastid flagellated protozoa, this includes the duplication of the single mitochondrion containing a network of DNA, known as the kinetoplast, and a flagellum that grows from a cytoplasmic basal body through the flagellar pocket compartment before emerging from the cell. Here, we show the morphological events and the timing of these events during the cell cycle of the epimastigote form of Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease. DNA staining, flagellum labeling, bromodeoxyuridine incorporation, and ultra-thin serial sections show that nuclear replication takes 10% of the whole cell cycle time. In the middle of the G2 stage, the new flagellum emerges from the flagellar pocket and grows unattached to the cell body. While the new flagellum is still short, the kinetoplast segregates and mitosis occurs. The new flagellum reaches its final size during cytokinesis when a new cell body is formed. These precisely coordinated cell cycle events conserve the epimastigote morphology with a single nucleus, a single kinetoplast, and a single flagellum status of the interphasic cell.  相似文献   

15.
In experimental Trypanosoma cruzi infections, severe thymic atrophy leads to release of activated CD4+CD8+ double-positive (DP) T cells to the periphery. In humans, activated DP T cells are found in the blood in association with severe cardiac forms of human chronic Chagas disease. The mechanisms underlying the premature thymocyte release during the chagasic thymic atrophy remain elusive. We tested whether the migratory properties of intrathymic thymocytes are modulated by the parasite trans-sialidase (TS). We found that TS affected the dynamics of thymocytes undergoing intrathymic maturation, and these changes were accompanied by an increase in the number of recent DP thymic emigrants in the peripheral lymphoid organs. We demonstrated that increased percentages of blood DP T cell subsets were associated with augmented antibody titers against TS in chagasic patients with chronic cardiomyopathy. In vitro studies showed that TS was able to activate the MAPK pathway and actin filament mobilization in thymocytes. These effects were correlated with its ability to modulate the adhesion of thymocytes to thymic epithelial cells and their migration toward extracellular matrix. These findings point to effects of TS that could influence the escape of immature thymocytes in Chagas disease.  相似文献   

16.
Signal transduction events triggered in mammalian host cells by the obligate intracellular parasite Trypanosoma cruzi are required for invasion. Infective T. cruzi trypomastigotes elicit Ca2+ signaling in mammalian host cells and activate transforming growth factor-beta receptor signaling pathways. The elevation of Ca2+ in T. cruzi, induced by host-cell contact, is also required for invasion, extending the concept of host-pathogen 'cross-talk' to invasive protozoan pathogens.  相似文献   

17.
Beta-interferon inhibits cell infection by Trypanosoma cruzi   总被引:1,自引:0,他引:1  
Preparations containing alpha/beta-interferon produced by L-929 cells were found to inhibit the capacity of bloodstream forms of Trypanosoma cruzi to associate with and infect mouse peritoneal macrophages or rat heart myoblasts. Marked reductions in the number of parasites per cell as well as in the percentage of cells associated with the trypanosomes were systematically observed in cultures of these cells that contained interferon. The inhibitory effect was abrogated in the presence of specific antibodies against alpha/beta-interferon, and purified beta-interferon induced a similar inhibitory effect, indicating that the active principle in the preparation was indeed interferon. Pretreatment of the parasites with alpha/beta-interferon reduced their infectivity for untreated host cells, whereas pretreatment of either type of host cell had no consequence on the interaction. The effect of interferon on the trypanosomes was reversible; the extent of the inhibitory effect was significantly reduced after 20 min, and was undetectable after 60 min when macrophages were used as host cells. Longer periods of time were required for the inhibitory effect to begin to subside (60 min) and to become undetectable or insignificant (120 min) when rat heart myoblasts were used. The results of additional studies performed with purified preparations of alpha- or beta-interferon revealed that only the latter was inhibitory of cell-parasite association. Because interferon is known to be produced shortly after T. cruzi infection and its administration has been shown to have a marked protective effect against this infection, our results suggest that the latter may involve inhibition of cell infection by interferon.  相似文献   

18.
Null mutants of the Trypanosoma cruzi insect stage-specific glycoprotein GP72 were created by targeted gene replacement. Targeting plasmids were constructed in which the neomycin phosphotransferase and hygromycin phosphotransferase genes were flanked by GP72 sequences. These plasmids were sequentially transfected into T. cruzi epimastigotes by electroporation. Southern blot analyzes indicated that precise replacement of the two genes had occurred. No aberrant rearrangements occurred at the GP72 locus and no GP72 gene sequences had been translocated elsewhere in the genome. Western blots confirmed that GP72 is not expressed in these null mutants. The morphology of the mutants is dramatically different from wild-type. In both mutant and wild-type parasites, the flagellum emerges from the flagellar pocket. In the null mutant the normal attachment of the flagellum to the cell membrane of the parasite is lost.  相似文献   

19.
We have identified an 83 kDa surface glycoprotein in T. cruzi trypomastigotes which specifically binds to rat heart myoblasts. The binding of this molecule to myoblasts is inhibited by excess unlabeled material and saturable. Antibodies against the cell surface of insect trypomastigotes, blood trypomastigotes and produced during human infection recognize the 83 kDa glycoprotein adhesion molecule by immunoblotting, indicating that this molecule that mediates this critical step is immunogenic and is a candidate for vaccination against Chagas' disease.  相似文献   

20.
Putrescine uptake in Trypanosoma cruzi epimastigotes is 10 to 50-fold higher than in Leishmania mexicana or Crithidia fasciculata. Polyamine transport in all these trypanosomatids is an energy-dependent process strongly inhibited by the presence of 2,4-dinitrophenol or KCN. Putrescine uptake in T. cruzi and L. mexicana was markedly decreased by the proton ionophore carbonylcyanide m-chlorophenylhydrazone but it was not affected by ouabain, a Na(+)-K+ pump inhibitor. The depletion of intracellular polyamines by treatment of parasite cultures with alpha-difluoromethylornithine elicited a marked induction of putrescine uptake in L. mexicana and C. fasciculata by increasing considerably the Vmax of this process. Conversely, the uptake of putrescine in T. cruzi was essentially unchanged by the same treatment. The differential regulation of putrescine transport in T. cruzi might be related to some distinctive features of polyamine metabolism in this parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号