首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of flowers starts when floral meristems develop on the flanks of the inflorescence meristem. In Arabidopsis the identity of floral meristems is promoted and maintained by APETALA1 (AP1) and CAULIFLOWER (CAL). In the ap1 cal double mutant the meristems that develop on the flanks of the inflorescence meristem are unable to establish floral meristem identity and develop as inflorescence meristems on which new inflorescence meristems subsequently proliferate. We demonstrate in contrast to previous models that AGAMOUS-LIKE 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP) are also floral meristem identity genes since the ap1-10 agl24-2 svp-41 triple mutant continuously produces inflorescence meristems in place of flowers. Furthermore, our results explain how AP1 switches from a floral meristem identity factor to a component that controls floral organ identity.  相似文献   

2.
3.
The MADS domain proteins APETALA1 (AP1), APETALA3 (AP3), PISTILLATA (PI), and AGAMOUS (AG) specify the identity of Arabidopsis floral organs. AP1 and AG homocomplexes and AP3-PI heterocomplexes bind to CArG-box sequences. The DNA-binding properties of these complexes were investigated. We find that AP1, AG and AP3-PI are all capable of recognizing the same DNA-binding sites, although with somewhat different affinities. In addition, the three complexes induce similar conformational changes on a CArG-box sequence. Phasing analysis reveals that the induced distortion is DNA bending, oriented toward the minor groove. The molecular dissection of AP1, AP3, PI and AG indicates that the boundaries of the dimerization domains of these proteins vary. The regions required to form a DNA-binding complex include, in addition to the MADS box, the entire L region (which follows the MADS box) and the first putative amphipathic helix of the K box in the case of AP3-PI, while for AP1 and AG only a part of the L region is needed. The similarity of the DNA-binding properties of AP1, AP3-PI and AG is discussed with regard to the biological specificity that these proteins exhibit.  相似文献   

4.
Inflorescence architecture is an important determinant of crop productivity. The number of spikelets produced by the wheat inflorescence meristem (IM) before its transition to a terminal spikelet (TS) influences the maximum number of grains per spike. Wheat MADS-box genes VERNALIZATION 1 (VRN1) and FRUITFULL 2 (FUL2) (in the SQUAMOSA-clade) are essential to promote the transition from IM to TS and for spikelet development. Here we show that SQUAMOSA genes contribute to spikelet identity by repressing MADS-box genes VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (VRT2), SHORT VEGETATIVE PHASE 1 (SVP1), and SVP3 in the SVP clade. Constitutive expression of VRT2 resulted in leafy glumes and lemmas, reversion of spikelets to spikes, and downregulation of MADS-box genes involved in floret development, whereas the vrt2 mutant reduced vegetative characteristics in spikelets of squamosa mutants. Interestingly, the vrt2 svp1 mutant showed similar phenotypes to squamosa mutants regarding heading time, plant height, and spikelets per spike, but it exhibited unusual axillary inflorescences in the elongating stem. We propose that SQUAMOSA–SVP interactions are important to promote heading, formation of the TS, and stem elongation during the early reproductive phase, and that downregulation of SVP genes is then necessary for normal spikelet and floral development. Manipulating SVP and SQUAMOSA genes can contribute to engineering spike architectures with improved productivity.

Functional characterization of developmental genes reveals ways to modify the wheat spike architecture to increase the number of grains and improve productivity.  相似文献   

5.
6.
Arabidopsis plants flower in response to long days (LDs). Exposure of leaves to inductive day lengths activates expression of FLOWERING LOCUS T (FT) protein which moves to the shoot apical meristem (SAM) to induce developmental reprogramming. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) are induced by FT at the apex. We previously screened the SAM for mRNAs of genes required to promote the floral transition in response to photoperiod, and conducted detailed expression and functional analyses on several putative candidates. Here, we show that expression of AGAMOUS-LIKE 24 (AGL24) is detected at the SAM under SD conditions and increases upon exposure to LDs. Mutations in AGL24 further delay flowering of a soc1 ful double mutant, suggesting that flowering is controlled by AGL24 partly independently of SOC1 and FUL.  相似文献   

7.
Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner.  相似文献   

8.
9.
10.
The developmental roles of AGL15 and AGL18, members of the AGL15-like clade of MADS domain regulatory factors, have not been defined previously. Analysis of transgenic Arabidopsis plants showed that overexpression of AGL18 produces the same phenotypic changes as overexpression of AGL15, and the two genes have partially overlapping expression patterns. Functional redundancy was confirmed through analysis of loss-of-function mutants. agl15 agl18 double mutants, but not single mutants, flower early under non-inductive conditions, indicating that AGL15 and AGL18 act in a redundant fashion as repressors of the floral transition. Further genetic analyses and expression studies were used to examine the relationship between AGL15 and AGL18 activity and other regulators of the floral transition. AGL15 and AGL18 act upstream of the floral integrator FT, and a combination of agl15 and agl18 mutations partially suppresses defects in the photoperiod pathway. agl15 agl18 mutations show an additive relationship with mutations in genes encoding other MADS domain floral repressors, and further acceleration of flowering is seen in triple and quadruple mutants under both inductive and non-inductive conditions. Thus, flowering time is determined by the additive effect of multiple MADS domain floral repressors, with important contributions from AGL15 and AGL18.  相似文献   

11.
12.
Wang HZ  Hu B  Chen GP  Shi NN  Zhao Y  Yin QC  Liu JJ 《Plant cell reports》2008,27(2):251-259
To explore a new approach to generating reproductive sterility in transgenic plants, the barnase gene from Bacillus amyloliquefaciens was placed under the control of an 1853-bp nucleotide sequence from the 3′end of the second intron of Arabidopsis AGAMOUS and CaMV 35S (−60) minimal promoter [AG-I-35S (−60)::Barnase], and was introduced into tobacco through transformation mediated by Agrobacterium tumefaciens. All AG-I-35S (−60)::Barnase transgenic plants showed normal vegetative growth and 28% of the transgenic lines displayed complete ablation of flowering. Two transgenic lines, Bar-5 and Bar-15, were 98.1 and 98.4% sterile, respectively, as determined by seed production and germination. When controlled by AG-I-35S (−60) chimeric promoter, barnase mRNA was detected in the reproductive tissues of transgenic tobacco plants, but not in vegetative parts. This study presents the first application of an AG intron sequence in the engineered ablation of sexual reproduction in plants. The AG-I-35S (−60)::Barnase construct can be useful in diminishing pollen and seed formation in plants, providing a novel bisexual sterility strategy for interception of transgene escape and has other potentially commercial use for transgenic engineering.  相似文献   

13.
14.
To unravel gene expression patterns during rice inflorescence development, particularly at early stages of panicle and floral organ specification, we have characterized random cloned cDNAs from developmental-stage-specific libraries. cDNA libraries were constructed from rice panicles at the stage of branching and flower primordia specification or from panicles undergoing floral organogenesis. Partial sequence analysis and expression patterns of some of these random cDNA clones from these two rice panicle libraries are presented. Sequence comparisons with known DNA sequences in databases reveal that approximately sixtyeight per cent of these expressed rice genes show varying degrees of similarity to genes in other species with assigned functions. In contrast, thirtytwo per cent represent uncharacterized genes. cDNAs reported here code for potential rice homologues of housekeeping molecules, regulators of gene expression, and signal transduction molecules. They comprise both single-copy and multicopy genes, and genes expressed differentially, both spatially and temporally, during rice plant development. New rice cDNAs requiring specific mention are those with similarity toCOP1, a regulator of photomorphogenesis inArabidopsis; sequence-specific DNA binding plant proteins like AP2-domain-containing factors; genes that specify positional information in shoot meristems like leucine-rich-repeat-containing receptor kinases; regulators of chromatin structure like Polycomb domain protein; and also proteins induced by abiotic stresses.  相似文献   

15.
To help understand the process of carpel morphogenesis, the roles of three carpel development genes have been partitioned genetically. Mutants of CRABS CLAW cause the gynoecium to develop into a wider but shorter structure, and the two carpels are unfused at the apex. Mutants of a second gene, SPATULA, show reduced growth of the style, stigma, and septum, and the transmitting tract is absent. Double mutants of crabs claw and spatula with homeotic mutants that develop ectopic carpels demonstrate that CRABS CLAW and SPATULA are necessary for, and inseparable from, carpel development, and that their action is negatively regulated by A and B organ identity genes. The third carpel gene studied, AGAMOUS, encodes C function that has been proposed to fully specify carpel identity. When AGAMOUS function is removed together with the A class gene APETALA2, however, the organs retain many carpelloid properties, suggesting that other genes are also involved. We show here that further mutant disruption of both CRABS CLAW and SPATULA function removes remaining carpelloid properties, revealing that the three genes together are necessary to generate the mature gynoecium. In particular, AGAMOUS is required to specify the identity of the carpel wall and to promote the stylar outgrowth at the apex, CRABS CLAW suppresses radial growth of the developing gynoecium but promotes its longitudinal growth, and SPATULA supports development of the carpel margins and tissues derived from them. The three genes mostly act independently, although there is genetic evidence that CRABS CLAW enhances AGAMOUS and SPATULA function.  相似文献   

16.
17.
Little is known about regulatory factors that act during the earliest stages of plant embryogenesis. The MADS domain protein AGL15 (for AGAMOUS-like) is expressed preferentially during embryogenesis and accumulates during early seed development in monocotyledonous and dicotyledonous flowering plants. AGL15-specific antibodies and immunohistochemistry were used to demonstrate that AGL15 accumulates before fertilization in the cytoplasm in the cells of the egg apparatus and moves into the nucleus during early stages of development in the suspensor, embryo, and endosperms. Relatively high levels of AGL15 are present in the nuclei during embryo morphogenesis and until the seeds start to dry in Brassica, maize, and Arabidopsis. AGL15 is associated with the chromosomes during mitosis, and gel mobility shift assays were used to demonstrate that AGL15 binds DNA in a sequence-specific manner. To assess whether AGL15 is likely to play a role in specifying the seed or embryonic phase of development, AGL15 accumulation was examined in Arabidopsis mutants that prematurely exit embryogenesis. lec1-2 mutants show an embryo-specific loss of AGL15 at the transition stage, suggesting that AGL15 interacts with regulators in the leafy cotyledons pathway.  相似文献   

18.
Multiple factors, including the MADS-domain proteins AGAMOUS-LIKE15 (AGL15) and AGL18, contribute to the regulation of the transition from vegetative to reproductive growth. AGL15 and AGL18 were previously shown to act redundantly as floral repressors and upstream of FLOWERING LOCUS T (FT) in Arabidopsis (Arabidopsis thaliana). A series of genetic and molecular experiments, primarily focused on AGL15, was performed to more clearly define their role. agl15 agl18 mutations fail to suppress ft mutations but show additive interactions with short vegetative phase (svp) mutations in ft and suppressor of constans1 (soc1) backgrounds. Chromatin immunoprecipitation analyses with AGL15-specific antibodies indicate that AGL15 binds directly to the FT locus at sites that partially overlap those bound by SVP and FLOWERING LOCUS C. In addition, expression of AGL15 in the phloem effectively restores wild-type flowering times in agl15 agl18 mutants. When agl15 agl18 mutations are combined with agl24 svp mutations, the plants show upward curling of rosette and cauline leaves, in addition to early flowering. The change in leaf morphology is associated with elevated levels of FT and ectopic expression of SEPALLATA3 (SEP3), leading to ectopic expression of floral genes. Leaf curling is suppressed by sep3 and ft mutations and enhanced by soc1 mutations. Thus, AGL15 and AGL18, along with SVP and AGL24, are necessary to block initiation of floral programs in vegetative organs.Appropriate timing of the shift from vegetative to reproductive growth is an important determinant of plant fitness. The time at which a plant flowers is determined through integration of signals reflecting extrinsic and intrinsic conditions, such as photoperiod, the duration of cold, plant health, and age (for review, see Amasino, 2010). One of the most important pathways regulating the timing of the floral transition is the photoperiod pathway (for review, see Imaizumi and Kay, 2006). Under long-day (LD) inductive conditions in Arabidopsis (Arabidopsis thaliana), photoperiod pathway components act to promote flowering by inducing CONSTANS (CO) and downstream genes. The floral integrator FLOWERING LOCUS T (FT) is a major target of multiple flowering pathways and the photoperiod pathway in particular. It is directly activated by CO (Samach et al., 2000). Under LD conditions, the peak of CO expression is coincident with the presence of light, and CO activates FT expression in the leaf vascular system (Yanovsky and Kay, 2003). FT travels through the phloem to the shoot apex (Corbesier et al., 2007), where, together with FLOWERING LOCUS D (Abe et al., 2005; Wigge et al., 2005), it activates APETALA1 (AP1) and other floral meristem identity genes, starting the flowering process. Other flowering time pathways converge on FT and/or directly impact gene expression in the meristem. The changes in gene expression that accompany the floral transition must be rapid, robust, largely irreversible, and strictly controlled spatially. This is achieved through positive feed-forward and negative feedback loops involving multiple regulatory factors (for recent review, see Kaufmann et al., 2010).Members of the MADS-box family of regulatory factors are central players in the regulatory loops controlling the floral transition (for a recent review, see Smaczniak et al., 2012a). MADS-domain factors typically act in large multimeric complexes and are well suited for regulation that involves combinatorial action. During the floral transition, MADS-domain proteins can act either as repressors or activators. In Arabidopsis, important floral repressors include SHORT VEGETATIVE PHASE (SVP) and members of the FLOWERING LOCUS C (FLC)-like group, including FLC, FLOWERING LOCUS M (FLM)/MADS AFFECTING FLOWERING1 (MAF1), and MAF2 to MAF5. Promoters of flowering include such MADS-domain factors as SUPPRESSOR OF CONSTANS1 (SOC1) and AGAMOUS-LIKE24 (AGL24). Together with non-MADS-box proteins FT and TWIN SISTER OF FT, SOC1 and AGL24 function as floral integrators. These operate downstream of the flowering time pathways but upstream of the meristem identity regulators such as LEAFY (LFY) and the MADS-domain factor AP1.The MADS-domain factors AGL15 and AGL18 also contribute to regulation of the floral transition in Arabidopsis. While single mutants have no phenotype, agl15 agl18 double mutants flower earlier than the wild type (Adamczyk et al., 2007). Therefore, AGL15 and AGL18 appear to act in a redundant fashion in seedlings, and like SVP, FLC, and MAF1 to MAF5, they act as floral repressors. The contributions of AGL15 and AGL18 are most apparent in the absence of strong photoperiodic induction: the agl15 agl18 double mutant combination partially suppresses the delay in flowering observed in co mutants, as well as the flowering delay associated with growth under short-day (SD) noninductive conditions. The earlier flowering in agl15 agl18 mutants under these conditions is associated with up-regulation of FT, and both AGL15 and AGL18 are expressed in the vascular system and shoot apex of young seedlings (Adamczyk et al., 2007), raising the possibility that AGL15 and AGL18 act directly on FT in leaves, as well as other targets in the meristem.AGL15, and to a lesser extent AGL18, have been further implicated in the networks that control flowering through molecular studies. Zheng et al. (2009) performed a chromatin immunoprecipitation (ChIP) analysis using AGL15-specific antibodies, tissue derived from embryo cultures, and a tiling array. Floral repressors (SVP and FLC), floral integrators (FT and SOC1), and a microRNA targeting AP2-like factors (miR172a) were identified as possible AGL15 targets (Zheng et al., 2009), suggesting that AGL15 may contribute to regulation through multiple avenues during the floral transition. AGL15 itself is directly bound and activated by AP2, which is both an A-class floral identity gene and a floral repressor (Yant et al., 2010). AGL15 is down-regulated in ap2 mutants, which are early flowering, while AGL18 is the nearest locus to multiple AP2-bound sites (Yant et al., 2010). Both AGL15 and AGL18 were identified as SOC1 targets through ChIP analyses (Immink et al., 2009; Tao et al., 2012). In yeast (Saccharomyces cerevisiae) two-hybrid assays, AGL15 interacts with a number of other MADS-domain proteins (de Folter et al., 2005), and in a one-hybrid study based on the SOC1 promoter, AGL15-SVP, AGL15-AGL24, and AGL15-SOC1 heterodimers were shown to bind to regions containing CArG boxes (Immink et al., 2012). AGL18 may act redundantly to AGL15 in these contexts. However, AGL18 either does not interact or only interacts weakly with other proteins in yeast two-hybrid assays (de Folter et al., 2005; Hill et al., 2008; Causier et al., 2012). It remains to be determined whether this truly reflects weaker or nonredundant in planta interactions or a technical problem in the artificial yeast system.Guided by the knowledge gained about AGL15 targets and interactions from molecular studies, we asked the following question: what is the functional significance of these molecular relationships in the context of the floral transition? We performed a series of genetic experiments combining agl15 agl18 mutations and mutations in interacting factors such as SVP, AGL24, and SOC1, as well as targets such as FT and SOC1. We also performed further molecular experiments focused on AGL15, for which a variety of tools are available. Among other things, we show that AGL15 and AGL18, along with AGL24 and SVP, play a role in blocking expression of the floral MADS-domain factor SEPALLATA3 (SEP3) during the vegetative phase. In the absence of these four factors, reproductive programs are initiated early, and floral genes are expressed in the youngest rosette leaf and cauline leaves.  相似文献   

19.
Mutations in the AGAMOUS (AG) gene cause transformations in two adjacent whorls of the Arabidopsis flower. Petals develop in the third floral whorl rather than the normal stamens, and the cells that would normally develop into the fourth whorl gynoecium behave as if they constituted an ag flower primordium. Early in flower development, AG RNA is evenly distributed throughout third and fourth whorl organ primordia but is not present in the organ primordia of whorls one and two. In contrast to the early expression pattern, later in flower development, AG RNA is restricted to specific cell types within the stamens and carpels as cellular differentiation occurs in those organs. Ectopic AG expression patterns in flowers mutant for the floral homeotic gene APETELA2 (AP2), which regulates early AG expression, suggest that the late AG expression is not directly dependent on AP2 activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号