首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
The proteinase (proteinase F) responsible for the initial proteolysis of the mung bean (Vigna radiata) trypsin inhibitor (MBTI) during germination has been purified 1400-fold from dry beans. The enzyme acts as an endopeptidase, cleaving the native inhibitor, MBTI-F, to produce the first modified inhibitor form, MBTI-E. The cleavage of the Asp76-Lys77 peptide bond of MBTI-F occurs at a pH optimum of 4.5, with the tetrapeptide Lys-Asp-Asp-Asp being released. Proteinase F exhibited no activity against the modified inhibitor forms MBTI-E and MBTI-C. Vicilin, the major storage protein of the mung bean, does not serve as a substrate for proteinase F between pH 4 and 7. Proteinase F is inhibited by phenylmethylsulfonyl fluoride, chymostatin, p-hydroxymercuribenzoate, and p-chlorophenylsulfonate, but not by iodoacetate and CuCl2. It is not activated by dithiothreitol, and is stable for extended periods of time (10 months, 4°C, pH 4.0) in the absence of reducing agents. An apparent molecular weight of 65,000 was found for proteinase F by gel filtration. Subcellular fractionation in glycerol suggests that greater than 85% of the proteinase F activity is found in the protein bodies of the ungerminated mung bean. The same studies indicate that at least 56% of the MBTI of the seed is also localized in the protein bodies.  相似文献   

2.
The primary structure of acidic trypsin inhibitor-2a (WBTI-2a,pI 5.9) fromPsophocarpus tetragonolobus (L.) DC seed was determined. This inhibitor consists of a single polypeptide chain of 180 amino acids including four half-cystine residues and has an N-terminal residue of pyroglutamic acid. The sequence of WBTI-2a,pI 5.9, showed 84% identity to acidic trypsin inhibitor-2 (WBTI-2,pI 5.1) but only 57% identity to the basic trypsin inhibitor (WBTI-1,pI 8.9) and 50% identity to the chymotrypsin inhibitor of winged bean. The data indicate that winged bean seed contains a family of three Kunitz-type inhibitors which have about 50% identity.  相似文献   

3.
The amino acid sequence of the major trypsin inhibitor, F, of ungerminated mung beans (Vigna radiata [L.] Wilczek) was determined by a combination of automatic solid phase and manual sequencing techniques. F is a typical Bowman-Birk-type proteinase inhibitor with 80 amino acid residues and exhibits a high degree of identity with the other sequenced members of the Bowman-Birk family of inhibitors. Thin layer peptide maps of mung bean inhibitors E and C (which appear during germination) indicate that both are derived from inhibitor F by limited specific proteolysis. Loss of the carboxyl-terminal residues 77 to 80 from F produces inhibitor E, while the loss of an additional two carboxyl-terminal residues, the loss of the amino-terminal residues 1 to 8, and an internal cleavage at Ala35-Asp36 produces inhibitor C from E. Another inhibitor species, E′, was isolated from ungerminated seeds. It differs from F in the loss of residues 1 to 6. The majority of the proteolytic cleavages noted in the F-E-C-E′ system are at peptide bonds involving aspartyl residues.  相似文献   

4.
The complete amino acid sequence of winged bean chymotrypsin inhibitor 3 (WCI-3) was determined by the conventional methods. WCI-3 consisted of 183 amino acid residues, but was heterogeneous in the carboxyl terminal region owing to the loss of one to four carboxyl terminal amino acid residues. The sequence of WCI-3 was highly homologous with those of soybean trypsin inhibitor Tia, winged bean trypsin inhibitor WTI-1, and Erythrina latissima trypsin inhibitor DE-3. One of the reactive site peptide bonds of WCI-3 was identified as Leu(65)-Ser(66), which was located at the same position as those of the other Kunitz-family leguminous proteinase inhibitors.  相似文献   

5.
Egg whites of three species of tortoise and turtle have been compared by gel chromatography for inhibitory activity against proteases. The egg white of Geomda trijuga trijuga Schariggar contains trypsin/subtilisin inhibitor while the egg white of Caretta caretta Linn. contains both trypsin and chymotrypsin inhibitors. No protease inhibitory activity has been detected in the egg white of Trionyx gangeticus Cuvier. An acidic trypsin/subtilisin inhibitor has been purified to homogeneity from the egg white of tortoise (G. trijuga trijuga). It is a single polypeptide chain of 100 amino acid residues, having a molecular weight of 11 700. It contains six disulphide bonds and is devoid of methionine and carbohydrate moiety. Its isoelectric point is at pH 5.95 and is stable at 100°C for 4 h at neutral pH. The inhibitor inhibits both trypsin and subtilisin by forming enzyme-inhibitor complexes at a molar ratio close to unity. Their dissociation contants are 7.2·10?9 M for bovine trypsin adn 5.5·10?7 M for subtilisin. Chemical modification of amino groups with trinitrobenzene sulfonate has reduced its inhibitory activities against both trypsin and subtilisin, but the loss of its trypsin inhibitory activity is faster than of its subtilisin inhibitory activity. It has independent binding sites for inhibition of trypsin and subtilisin.  相似文献   

6.
The complete amino acid sequence of a major molecular form of subtilisin inhibitor from adzuki beans (Vigna angularis) was established by manual analysis using 4-N,N-dimethylaminoazobenzene-4'-isothiocyanate (DABITC). Sequencing was performed on the peptides which were derived by digesting the inhibitor with lysyl-endopeptidase and Staphylococcus aureus V8-protease. The inhibitor consisted of 92 amino acid residues and the molecular weight was calculated to be 10,800. A minor form of subtilisin inhibitor was found, which lacked the amino-terminal 19 residues of the major one. Comparison of amino acid sequences revealed that the adzuki bean subtilisin inhibitors were 29-68% homologous in sequence to the inhibitors of so-called "potato inhibitor I family."  相似文献   

7.
The complete amino acid sequence of winged bean albumin-1 (WBA-1) of Psophocarpus tetragonolobus (L.) DC has been determined. The protein consists of a single polypeptide chain of 175 amino acid residues, with one disulfide bond, corresponding to a molecular mass of 19333 Da. WBA-1 was found to be homologous with the Kunitz-type seed trypsin inhibitors. The similarity between WBA-1 and the trypsin inhibitors from soybean and winged bean was 38% and 28%, respectively; similarity was most marked in the C-terminal third of the sequence with identities of 47% and 37%, respectively. Significant similarity was found also between the 2S Kunitz-type proteins and the carboxy-terminal region of the 7S storage globulins, suggesting that these two groups of proteins are related and may have evolved from a common ancestral precursor. Circular dichroism measurements suggest a high content of beta sheet (52%) while secondary structure predictions based on amino acid sequence indicate a similar content and distribution of beta sheet to that found for soybean trypsin inhibitor by X-ray diffraction studies.  相似文献   

8.
The primary structure of the broad specificity proteinase inhibitor from dog submandibular glands was elucidated. The inhibitor consists of a single polypeptide chain of 117 amino acids which is folded into two domains (heads) connected by a peptide of three amino acid residues. Both domains I and II show a clear structural homology to each other as well as to the single-headed pancreatic secretory trypsin inhibitors (Kazal type). The trypsin reactive site (-Cys-Pro-Arg-Leu-His-Glx-Pro-Ile-Cys-) is located in domain I and the chymotrypsin reactive center (-Cys-Thr-Met-Asp-Tyr-Asx-Arg-Pro-Leu-Tyr-Cys-) in domain II, cf. the Figure. The inhibitor is thus double-headed with two independent reactive sites. Whereas head I is responsible for the inhibition of trypsin and plasmin, head II is responsible for the inhibition of chymotrypsin, subtilisin, elastase and probably also Aspergillus oryzae protease and pronase. Remarkably, the structural homology exists also to the single-headed acrosin-trypsin inhibitors from seminal plasma[12] and the Japanese quail inhibitor composed of three domains[13].  相似文献   

9.
The primary structure of acidic trypsin inhibitor-2a (WBTI-2a,pI 5.9) fromPsophocarpus tetragonolobus (L.) DC seed was determined. This inhibitor consists of a single polypeptide chain of 180 amino acids including four half-cystine residues and has an N-terminal residue of pyroglutamic acid. The sequence of WBTI-2a,pI 5.9, showed 84% identity to acidic trypsin inhibitor-2 (WBTI-2,pI 5.1) but only 57% identity to the basic trypsin inhibitor (WBTI-1,pI 8.9) and 50% identity to the chymotrypsin inhibitor of winged bean. The data indicate that winged bean seed contains a family of three Kunitz-type inhibitors which have about 50% identity.  相似文献   

10.
The proteolysis of trypsin inhibitors in legume seeds   总被引:1,自引:0,他引:1  
The seeds of plants often contain large amounts of proteins, which are subjected to extensive proteolytic processing during seed development and subsequent germination. One class of legume seed proteins, the Bowman-Birk-type trypsin inhibitors, has proved especially useful as a subject in studying these events. Sequence studies of the trypsin inhibitors from a number of legume species suggest that many of the inhibitors undergo a limited shortening at the amino terminus during seed development. However, during germination, the inhibitors appear to function as storage proteins. As such, they are subjected to extensive proteolysis, ultimately leading to their destruction. This degradative process has been studied extensively in the mung bean (Vigna radiata [L.] Wilczek). Proteolysis of the mung bean trypsin inhibitor involves, at least initially, an ordered sequence of limited proteolytic cleavages. The two proteases involved in the initial phases of this degradation have been identified and partially characterized.  相似文献   

11.
A trypsin was purified from the hepatopancreas of snakehead (Channa argus) by ammonium sulfate fractionation and a series of column chromatographies including DEAE-Sepharose, Sephacryl S-200 HR and Hi-Trap Capto-Q. The molecular mass of the purified trypsin was about 22 kDa, as estimated by SDS-PAGE. The optimum pH and temperature of the purified trypsin were 9.0 and 40 °C, respectively. The trypsin was stable in the pH range of 7.5-9.5 and below 45 °C. The enzymatic activity was strongly inhibited by serine proteinase inhibitors, such as MBTI, Pefabloc SC, PMSF, LBTI and benzamidine. Peptide mass fingerprinting (PMF) of the purified protein obtained 2 peptide fragments with 25 amino acid residues and were 100% identical to the trypsinogen from pufferfish (Takifugu rubripes). The activation energy (Ea) of this enzyme was 24.65 kJ·M− 1. Apparent Km was 1.02 μM and kcat was 148 S− 1 for fluorogenic substrate Boc-Phe-Ser-Arg-MCA. A trypsinogen gene encoding 247 amino acid residues was further cloned on the basis of the sequence obtained from PMF and the conserved site peptide of trypsinogen together with 5′-RACE and 3′-RACE. The deduced amino acid sequence contains a signal peptide of 15 residues and an activation peptide of 9 amino acid residues with a mature protein of 223 residues. The catalytic triad His-64, Asp-107, Ser-201 and 12 Cys residues which may form 6 disulfide bonds were conserved. Compared with the PMF data, only 2 amino acid residues difference were identified, suggesting the cloned trypsinogen is quite possibly the precursor of the purified trypsin.  相似文献   

12.
Trypsin inhibitor was purified to homogeneity from seeds of the mung bean (Vigna radiata [L.] Wilczek). The protease inhibitor has the following properties: inhibitory activity toward trypsin, but not toward chymotrypsin; isoelectric point at pH 5.05; molecular weight of 11,000 to 12,000 (sodium dodecyl sulfate gel electrophoresis) or 14,000 (gel filtration); immunological cross-reactivity against extracts of black gram and black-eyed pea, but not against soybean; no inhibitory activity against vicilin peptidohydrolase, the principal endopeptidase in the cotyledons of mung bean seedlings.

The trypsin inhibitor content of the cotyledons declines in the course of seedling growth and the presence of an inactivating factor can be demonstrated by incubating crude extracts in the presence of β-mercaptoethanol. This inactivating factor may be a protease as vicilin peptidohydrolase rapidly inactivates the trypsin inhibitor. Removal of trypsin inhibitory activity from crude extracts by means of a trypsin affinity column does not result in an enhancement of protease activity in the extracts.

The intracellular localization of trypsin inhibitor was determined by fractionation of crude extracts on isopycnic sucrose gradients and by cytochemistry with fluorescent antibodies. Both methods indicate that trypsin inhibitor is associated with the cytoplasm and not with the protein bodies where reserve protein hydrolysis occurs. No convincing evidence was obtained which indicates that the catabolism of trypsin inhibitor during germination and seedling growth is causally related to the onset of reserve protein breakdown.

  相似文献   

13.
14.
The major inhibitor of trypsin in seeds of Prosopsis juliflora was purified by precipitation with ammonium sulphate, ion-exchange column chromatography on DEAE- and CM-Sepharose and preparative reverse phase HPLC on a Vydac C-18 column. The protein inhibited trypsin in the stoichiometric ratio of 1:1, but had only weak activity against chymotrypsin and did not inhibit human salivary or porcine pancreatic alpha-amylases. SDS-PAGE indicated that the inhibitor has a Mr of ca 20,000, and IEF-PAGE showed that the pI is 8.8. The complete amino acid sequence was determined by automatic degradation, and by DABITC/PITC microsequence analysis of peptides obtained from enzyme digestions of the reduced and S-carboxymethylated protein with trypsin, chymotrypsin, elastase, the Glu-specific protease from S. aureus and the Lys-specific protease from Lysobacter enzymogenes. The inhibitor consisted of two polypeptide chains, of 137 residues (alpha chain) and 38 residues (beta chain) linked together by a single disulphide bond. The amino acid sequence of the protein exhibited homology with a number of Kunitz proteinase inhibitors from other legume seeds, the bifunctional subtilisin/alpha-amylase inhibitors from cereals and the taste-modifying protein miraculin.  相似文献   

15.
Ungerminated seeds of mung bean contain a single major species (F) of trypsin inhibitor with five minor species (A-E) separable on diethylaminoethyl-cellulose. During germination the level of trypsin inhibitory activity decreases from 1.8 units/grams dry weight in ungerminated cotyledons to 1.2 units/grams in cotyledons from seeds germinated 5 days. This decrease is accompanied by major changes in the distribution of inhibitory activity among the inhibitor species. By 48 hours of germination, inhibitor F has largely disappeared with an accompanying rapid increase in inhibitor C. Similarly, though less rapidly, inhibitor E decreases while inhibitor A increases. A similar sequence of changes is found in vitro when purified inhibitor F is incubated with extracts from seeds germinated 96 hours. The combined in vivo and in vitro data suggest a conversion sequence of: F → E → C → A. The in vitro conversion is inhibited by phenylmethyl sulfonyl fluoride but not by iodoacetamide, indicating that at least the initial phases of inhibitor conversion are not catalyzed by the mung bean vicilin peptidohydrolase.  相似文献   

16.
A serine protease inhibitor was purified from plasma of the eastern oyster, Crassostrea virginica. The inhibitor is a 7609.6 Da protein consisting of 71 amino acids with 12 cysteine residues that are postulated to form 6 intra-chain disulfide bridges. Sequencing of the cloned cDNA identified an open reading frame encoding a polypeptide of 90 amino acids, with the 19 N-terminal amino acids forming a signal peptide. No sequence similarity with known proteins was found in sequence databases. The protein inhibited the serine proteases subtilisin A, trypsin and perkinsin, the major extracellular protease of the oyster protozoan parasite, Perkinsus marinus, in a slow binding manner. The mechanism of inhibition involves a rapid binding of inhibitor to the enzyme to form a weak enzyme-inhibitor complex followed by a slow isomerization to form a very tight binding enzyme-inhibitor complex. The overall dissociation constants K(i) with subtilisin A, perkinsin and trypsin were 0.29 nM, 13.7 nM and 17.7 nM, respectively. No inhibition of representatives of the other protease classes was detected. This is the first protein inhibitor of proteases identified from a bivalve mollusk and it represents a new protease inhibitor family. Its tight binding to subtilisin and perkinsin suggests it plays a role in the oyster host defense against P. marinus.  相似文献   

17.
Preparations of new low molecular weight protein inhibitors of serine proteinases have been obtained from buckwheat Fagopyrum esculentum seeds by chromatography of seed extracts on trypsin-Sepharose 4B, Mono-Q and Mono-S ion-exchangers. Their molecular masses, determined by mass spectrometry, were equal to 5203 (BWI-1c), 5347 (BWI-2c), 7760 (BWI-3c) and 6031 daltons (BWI-4c). All inhibitors possessed high pH-stability in the pH range 2-12 and thermostability. In addition to trypsin, BWI-3c and BWI-4c inhibitors inhibited chymotrypsin and subtilisin-like proteases. The inhibition constants (Ki) for trypsin, chymotrypsin and subtilisin by the studied inhibitors were determined. The N-terminal sequences of all inhibitors were established: BWI-1c (23 residues), BWI-2c (33 residues), BWI-3c (18 residues) and BWI-4c (20 residues). According to the physicochemical properties and N-terminal amino acid sequences, buckwheat seed protease inhibitors BWI-3c and BWI-4c are suggested to belong to the potato proteinase inhibitor I family.  相似文献   

18.
A protease inhibitor was purified from the African marama bean (Tylosema esculenturm). The inhibitor is present in large amounts, representing about 10.5% of the total protein. The molecular weight is slightly larger than soybean trypsin inhibitor and was estimated at 23,000 by SDS-gel electrophoresis or 24,500 by amino acid analysis. The amino acid composition was atypical of most other plant inhibitors with a cysteine content of only one or possibly two residues/mole and a blocked amino terminus. Inhibition studies indicated virtually no inhibition of chymotrypsin activity. Elastase, however, was inhibited to the same extent as trypsin, requiring about 2 moles of inhibitor for complete inhibition of the enzyme.  相似文献   

19.
Indole-3-acetyl-L-aspartic acid (IAA-Asp) is a natural product in many plant species and plays many important roles in auxin metabolism and plant physiology. IAA-Asp hydrolysis activity is, therefore, believed to affect plant physiology through changes in IAA metabolism in plants. We applied a newly discovered technique, arginine-rich intracellular delivery (AID), to deliver a bacterial IAA-Asp hydrolase into cells of mung bean (Vigna radiata) seeds and measured its effects on mung bean seed germination. IAA-Asp hydrolase inhibited seed germination about 12 h after the enzyme was delivered into cells of mung bean seeds both covalently and noncovalently. Mung bean seed germination was delayed by 36 h when the enzyme protein was noncovalently attached to the AID peptide and longer than 60 h when the enzyme protein was covalently attached to the AID peptide. Root elongation of mung bean plants was inhibited as much as 90% or 80%, respectively, when the IAA-Asp hydrolase was delivered with the AID peptide by covalent or noncovalent association. Further thin-layer chromatography analysis of plant extracts indicated that the levels of IAA increased about 12 h after treatment and reached their peak at 24 h. This result suggests that IAA-Asp hydrolase may increase IAA levels and inhibit seed germination of mung bean plants and that the AID peptide is a new, rapid, and efficient experimental tool to study the in vivo activity of enzymes of interest in plant cells.  相似文献   

20.
Japanese quail ovomucoid third domain (OMJPQ3), a Kazal-type inhibitor, was crystallographically refined with energy constraints. The final R-value is 0.20 at 1.9 Å resolution. The four molecules in the asymmetric unit are very similar, with deviations of main-chain atoms between 0.2 and 0.3 Å. An analysis of the side-chain hydrogen-bonding pattern and amino acid variability in the Kazal family shows a high correlation between hydrogen-bonding and conservation.The conformation of the reactive site loop (P2-P2′) of OMJPQ3 is similar to those of basic pancreatic trypsin inhibitor, Streptomyces subtilisin inhibitor, and soybean trypsin inhibitor. This suggests a common binding mode and justifies model-building studies of complexes.Complexes of OMJPQ3 with trypsin, chymotrypsin and elastase were modelled on the basis of the trypsin-basic pancreatic trypsin inhibitor complex structure and inspected by use of a computer graphics system. Stereochemically satisfying models were constructed in each case and detailed interactions are proposed. The complex with elastase is of particular interest, showing that leucine and methionine are good P1 residues. A good correlation is observed between functional properties of ovomucoid variants and the position of the exchanged residues with respect to the modelled inhibitor-protease contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号