首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porcine β-lipotropin was incubated with a crude porcine pituitary homogenate, and the main cleavage products of the hormone were isolated and identified. Our results gave evidence for the enzymic cleavage of the Lys46-Met47, Arg60-Tyr61, Leu77-Phe78, and Lys79-Asn80 bonds of the β-lipotropin structure. The cleavage of the Arg60-Tyr61 peptide bond was accompanied with the concomitant release of opiate activity in the first period of incubation, provided that bacitracin was present in the incubation mixture. The enzyme was differentiated from trypsin or plasmin and appears to be a specific intracellular protease involved in the biosynthesis of pituitary endorphins.  相似文献   

2.
3.
4.
Enzymatically active human testis angiotensin-converting enzyme (ACE) was expressed in Chinese hamster ovary (CHO) cells stably transfected with each of three vectors: p omega-ACE contains a full-length testis ACE cDNA under the control of a retroviral promoter; and pLEN-ACEVII and pLEN-ACE6/5, in which full-length and membrane anchor-minus testis ACE cDNAs, respectively, are under the control of the human metallothionein IIA promoter and SV40 enhancer. In every case, active recombinant human testis ACE (hTACE) was secreted in a soluble form into the culture media, up to 2.4 mg/liter in the media of metal-induced, high-producing clones transfected with one of the pLEN vectors. In addition, membrane-bound recombinant enzyme was recovered from detergent extracts of cell pellets of CHO cells transfected with either p omega-ACE or pLEN-ACE-VII. Recombinant converting enzyme was purified to homogeneity by single-step affinity chromatography of conditioned media and detergent-extracted cell pellets in 85 and 70% overall yield, respectively. Purified hTACE from all sources comigrated with the native testis isozyme on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with M(r) approximately 100 kDa. The native and recombinant proteins cross-reacted equally with anti-human kidney ACE antiserum on Western blotting. The catalytic activity of recombinant angiotensin-converting enzyme, in terms of angiotensin I and 2-furanacryloyl-Phe-Gly-Gly hydrolysis, chloride activation, and lisinopril inhibition, was essentially identical to that of the native enzyme. The facile recovery in high yield of fully active hTACE from the media of stably transfected CHO cells provides a suitable system for investigating structure-function relationships in this enzyme.  相似文献   

5.
A method for preparation of a catalytically active fragment of bovine lung angiotensin-converting enzyme (ACE) has been developed. It includes limited proteolysis of the full-length somatic form of the enzyme by trypsin. The resulting fragment corresponds to the N-terminal domain of angiotensin-converting enzyme. The influence of chloride and sulfate anions on the enzymatic activity of this fragment has been investigated, and kinetic parameters for hydrolysis of synthetic tripeptide substrates catalyzed by the N-domain of ACE have been determined. Comparison of these parameters with those obtained for full-length somatic bovine ACE suggests that in the bovine somatic ACE molecule active centers located in various domains may function interdependently.  相似文献   

6.
The hybridoma producing monoclonal antibody (IgG1) to human angiotensin-converting enzyme (ACE) has been prepared by fusion of murine myeloma P3O1 with spleen cells of BALB/c mice immunized with a purified human lung ACE preparation. A high specificity of monoclonal antibody (MAb) binding to immobilized ACE has been demonstrated by enzyme-linked immunosorbent assay and that of soluble ACE by an immunoadsorption test. The latter technique permits the use of impure ACE preparations for the screening procedure. This MAb did not affect ACE activity. We believe this antibody will be useful not only for immunoassay and immunopurification of ACE, but also as a tool for the investigation of the tissue distribution of the enzyme as well as for the study of the structure and mechanism of action of ACE.  相似文献   

7.
The neutral endopeptidase NEP 24.11 (enkephalinase) has been visualized in human spinal cord by in vitro autoradiography using [3H]HACBO-Gly as a radiolabelled probe. The specific binding was present in the substantia gelatinosa and particularly dense in meninges surrounding the spinal cord. Enzymatic studies using [3H][D-Ala2, Leu]enkephalin as substrate confirmed the presence of NEP in dura and pia mater of human tissue. In addition, the human meninges were shown to contain high concentrations of angiotensin-converting enzyme (ACE) and aminopeptidases. The three enzymes have also been detected in rat tissues but their distribution pattern differs from that of human tissue. In dura mater, 45% of the [Leu]enkephalin hydrolysis was due to enkephalinase and 38% to bestatin-sensitive aminopeptidases. In contrast in pia mater aminopeptidases were more efficient in hydrolyzing enkephalin. The possible role of these enzymes in the meninges could be to maintain the homeostatic concentration of neuropeptides in the central nervous system.  相似文献   

8.
Isolation of human liver angiotensin-converting enzyme by chromatofocusing   总被引:1,自引:0,他引:1  
Angiotensin-converting enzyme (EC 3.4.15.1) has been isolated from human liver by chromatofocusing. The isolation procedure permitted us to obtain a 9000-fold purified enzyme with a 22% yield. Specific activity of the angiotensin-converting enzyme was 10 units/mg of protein. The molecular mass of enzyme determined by polyacrylamide gel electrophoresis under denaturing conditions was 150,000. The isoelectric point (4.2-4.3) was also determined by chromatofocusing. The Km values of the enzyme for hippuryl-L-histidyl-L-leucine and N-benzyloxycarbonyl-L-phenylalanyl-L-histidyl-L-leucine are 5000 and 125 microM, respectively. The human liver angiotensin-converting enzyme is inhibited by bradykinin-potentiating factor SQ 20881 (IC50 = 18 nM).  相似文献   

9.
Angiotensin-converting enzyme 2 (ACE2) is a newly discovered, membrane-bound aminopeptidase responsible for the production of vasodilatory peptides such as angiotensin 1-7 (Ang 1-7). Thus, ACE2 is important in counteracting the adverse, vasoconstrictor effects of angiotensin II (Ang II). The objective of the present study was to clone and characterize a constitutively secreted form of ACE2 as a prelude to an investigation into its therapeutic potential in hypertension. A truncated form of ACE2 was cloned into a lentiviral vector behind the human elongation factor 1 alpha promoter (lenti-shACE2). Transfection experiments demonstrated that secreted human ACE2 (shACE2) was secreted constitutively into the medium. The kinetic properties of shACE2 were comparable to the human recombinant enzyme (rACE2). Transduction of human coronary artery endothelial cells and rat cardiomyocytes with lenti-shACE2 showed a significant secretion of the enzyme into the medium compared to its native, membrane-bound homolog (human ACE2 [hACE2]). In addition, systemic administration of lenti-shACE2 into neonatal rats resulted in a eightfold increase in ACE2 activity in the serum above control values. These observations establish that lenti-shACE2 can be used to transduce cardiovascularly relevant cells for the secretion of functional ACE2 enzyme both in vitro and in vivo. Collectively, these results set the stage for the use of these vectors to investigate the consequences of ACE2 over-expression in the pathogenesis of hypertension.  相似文献   

10.
Statins are effective drugs in the prevention of cardiovascular disease. Recent studies suggested that statins have additional beneficial effects on the vascular wall independent of their cholesterol-lowering effects. We investigated whether atorvastatin influences angiotensin-converting enzyme (ACE) production in differentiating human macrophages. Human peripheral blood monocytes (PBM) were isolated from fresh buffy coats. The cells were allowed to differentiate for 0-8 days in macrophage serum-free medium with 5 ng/ml granulocyte-macrophage colony-stimulating factor. Atorvastatin (0.005-0.5 microM), mevalonate (200-400 microM), geranylgeranyl pyrophosphate (1.25-2.5 microM), and/or farnesylpyrophosphate (FPP; 1.25-2.5 microM) was added on the second day of differentiation and then every other day. After incubation time, the ACE amount in intact macrophages was measured. ACE amount in PBM was low. A marked time-dependent ACE induction was noticed during differentiation of monocytes to macrophages. Atorvastatin treatment inhibited ACE induction during differentiation. In the presence of mevalonate, atorvastatin failed to downregulate ACE production. Cotreatment of the cells with atorvastatin and FPP reversed the suppressive effect of atorvastatin on ACE. In conclusion, atorvastatin inhibited ACE upregulation, normally occurring in differentiating human macrophages. This effect was mediated via the mevalonate pathway, and inhibition of FPP was probably involved. The finding that atorvastatin inhibited ACE upregulation may represent a novel pleiotropic action and an additional beneficial effect of statins in treatment of cardiovascular disease.  相似文献   

11.

Introduction  

Angiotensin-converting enzyme (ACE) 2, a homolog of ACE, converts angiotensin (Ang) II into Ang(1-7), and the vasoprotective effects of Ang(1-7) have been documented. We explored the hypothesis that serum autoantibodies to ACE2 predispose patients with connective tissue diseases to constrictive vasculopathy, pulmonary arterial hypertension (PAH), or persistent digital ischemia.  相似文献   

12.
Using chromatofocusing, an angiotensin-converting enzyme (EC 3.4.15.1) has been isolated from human lung. The procedure allows for 24 300-fold purification of the enzyme. The enzyme specific activity is 36.3 u. per mg protein; Mr as determined by polyacrylamide gel electrophoresis is 150 000. The lung enzyme after solubilization by trypsin treatment was found to be heterogeneous. Four isoforms of the enzyme with pI 5.3, 4.9, 4.8 and 4.6 were identified. The pH-optimum for the enzyme with respect to hippuryl-L-histidyl-L-leucine hydrolysis lies at 8.3; Km = 2.8 mM. The effect of Cl- on the enzyme activity was studied. It was found that the bradykinin-potentiating factor (SQ 20 881) inhibits the human lung angiotensin-converting enzyme (I50 = 1.6 X 10(-8) M).  相似文献   

13.
Summary Previous work has suggested that not all immunoreactive angiotensin-converting enzyme (ACE) in tissues or cells is in a biologically active state. We have explored this possibility in cultured human umbilical vein endothelial cells (HUVEC), one of the most widely studied in vitro endothelial cell systems. Our approach included characterization of the effect of increasing passage number on ACE activity and expression of immunoreactive ACE at the single cell level, the subcellular compartmentalization of active ACE, and the effect of phorbol ester (PMA) treatment. We found that both ACE activity and expression of ACE antigen were downregulated by cultivation (30% of ACE-positive cells at seventh passage vs. 90% in primary culture). ACE downregulation is specific (number of CD31-positive cells did not change with cultivation) and correlated with downregulation of factor VIII-antigen. The percentage of ACE-positive cells in permeabilized HUVEC at third passage was almost twice that in nonpermeabilized HUVEC (90% vs. 50%), indicating that HUVEC contain intracellular immunoreactive ACE. ACE activity, however, was similar when measured in intact cells and in cell lysates. Moreover, diazonium salt of sulfanilic acid (DASA), a membrane-impermeable ACE inhibitor, inhibited ACE activity in intact cells and in cell lysates at the same extent, thus implying that intracellular ACE is inactive. PMA (100 nM) treatment increased the percentage of ACE-positive cells at third passage from 57 to 96%. ACE activity was increased 3-fold in cell and 1.5-fold in the culture medium of PMA-treated cells. Analysis of ACE activity in intact monolayers and cell lysates of control and PMA-treated cells revealed that all enzymatically active ACE in PMA-treated cells is localized on the plasma membrane and acts as an ectoenzyme. We conclude that expression of ACE by HUVEC is downregulated by repeated passage in culture but can be restored by PMA treatment. In addition, ACE expression is heterogeneous between neighboring cells, and total immunoreactive ACE protein associated with HUVEC includes an inactive pool of the enzyme.  相似文献   

14.
Aydin  Fatih  Turkoglu  Vedat  Bas  Zehra 《Molecular biology reports》2021,48(5):4191-4199
Molecular Biology Reports - Angiotensin-converting enzyme (ACE, EC 3.4.15.1) in the renin-angiotensin system regulates blood pressure by catalyzing angiotensin I to the vasoconstrictor angiotensin...  相似文献   

15.
The localization of angiotensin-converting enzyme (ACE) in human tissues has been studied by the PAP-method with the use of monoclonal antibody 9 B9 against human lung ACE. The enzyme was detected on the surface of endothelial cells in lung, myocardium, liver, intestine and testis as well as in the epithelial cells of the kidney proximal tubules and intestine. The monoclonal antibody 9 B9 did not react with ACE in the epithelial cells of the testis seminiferous tubules. These data suggest that the antibody 9 B9 recognizes epitope which is shared by the ACE molecule of endothelial cells and renal and intestinal epithelial cells but is not present in testicular ACE, or is not accessible there to the antibody.  相似文献   

16.
Summary The localization of angiotensin-converting enzyme (ACE) in human tissues has been studied by the PAP-method with the use of monoclonal antibody 9B9 against human lung ACE. The enzyme was detected on the surface of endothelial cells in lung, myocardium, liver, intestine and testis as well as in the epithelial cells of the kidney proximal tubules and intestine. The monoclonal antibody 9B9 did not react with ACE in the epithelial cells of the testis seminiferous tubules. These data suggest that the antibody 9B9 recognizes epitope which is shared by the ACE molecule of endothelial cells and renal and intestinal epithelial cells but is not present in testicular ACE, or is not accessible there to the antibody.  相似文献   

17.
Saijonmaa O  Nyman T  Kosonen R  Fyhrquist F 《Cytokine》2000,12(8):1253-1256
OBJECTIVE: To examine the role of oncostatin M (OSM) in the regulation of angiotensin converting enzyme (ACE) in endothelial cells. METHODS: Cultured endothelial cells were incubated with OSM (25-200 pM) for 24 h. Incubations were performed without or with the tyrosine kinase inhibitor, herbimycin (87 nM), or the selective MAP kinase kinase inhibitor, PD98059 (50 microM). ACE amount in intact endothelial cells was measured by an inhibitor binding assay and ACE mRNA levels by RNase protection assay. RESULTS: OSM caused a dose dependent increase in ACE amount and increased the expression of ACE mRNA. The stimulatory effect of OSM was inhibited by pretreatments with herbimycin or PD98059. CONCLUSIONS: OSM induced ACE in cultured HUVECs. Tyrosine kinase and MAPK activation were probably involved in ACE induction. Local induction of ACE by OSM in the vascular wall may be a consequence of inflammatory processes leading to locally increased production of angiotensin II and breakdown of bradykinin.  相似文献   

18.
Nicotine, a component of cigarette smoke, has been implicated in the pathogenesis of cardiovascular disease. We examined whether nicotine regulates angiotensin-converting enzyme (ACE), an enzyme that plays an important role in the pathophysiology of atherosclerosis and hypertension. Human umbilical cord vein endothelial cells were treated with nicotine (0.1-1 microM) alone or in combination with vascular endothelial growth factor (VEGF; 0.5 nM) or GF-109203X (GFX; 2.5 microM). The amount of ACE in intact endothelial cells was measured by an inhibitor-binding assay method, and ACE mRNA levels were quantified using LightCycler technology. Phosphorylated PKC levels were measured by Western immunoblotting. Nicotine did not modulate basal ACE production but significantly potentiated VEGF-induced ACE upregulation. Treatment of endothelial cells with the PKC inhibitor GFX totally blocked VEGF- and nicotine-induced ACE upregulation. VEGF induced PKC phosphorylation, which was potentiated by cotreatment with nicotine. We conclude that nicotine significantly potentiated VEGF-induced ACE upregulation. This effect was probably mediated by PKC phosphorylation. The interaction of nicotine with VEGF in ACE induction may contribute to the pathogenesis of smoking-related cardiovascular disease.  相似文献   

19.
A secretory granule-associated enzymatic activity that converts mono-[125I]-D-Tyr-Val-Gly into mono-[125I]-D-Tyr-Val-NH2 has been studied. The activity is primarily soluble and shows optimal activity at pH 7 to pH 8. Amidation activity was stimulated 9-fold by addition of optimal amounts of copper (3 microM). In the presence of optimal copper, ascorbate stimulated the reaction 7-fold; none of the other reduced or oxidized cofactors tested was as effective. Taking into account the dependence of the reaction on ascorbate and molecular oxygen and the production of glyoxylate [2], it is suggested that the alpha-amidation enzyme is a monooxygenase. Lineweaver Burk plots with D-Tyr-Val-Gly as the varied substrate demonstrated Michelis-Menten type kinetics with the values of Km and Vmax increasing with the addition of ascorbate to the assay. A variety of peptides ending with a COOH-terminal Gly residue act as inhibitors of the reaction. Two synthetic peptides, gamma 2MSH and ACTH(1-14), with carboxyl termini similar to the presumed physiological substrates for the enzyme, act as competitive inhibitors with similar K1 values. It is likely that this secretory granule alpha-amidation activity is involved in the physiological biosynthetic alpha-amidation of a wide range of bioactive peptides.  相似文献   

20.
Because bradykinin (BK) appears to have cardioprotective effects ranging from improved hemodynamics to antiproliferative effects, inhibition of BK-degrading enzymes should potentiate such actions. The purpose of this study was to find out which enzymes are responsible for the degradation of BK in human plasma. Human plasma from healthy donors (n = 10) was incubated with BK in the presence or absence of specific enzyme inhibitors. At high (micromolar) concentrations, BK was mostly (>90%) degraded by carboxypeptidase N (CPN)-like activity. In contrast, at low (nanomolar) substrate concentrations, at which the velocity of the catalytic reaction is equivalent to that under physiological conditions, BK was mostly (>90%) converted into an inactive metabolite, BK-(1-7), by angiotensin-converting enzyme (ACE). BK-(1-7) was further converted by ACE into BK-(1-5), with accumulation of this active peptide. A minor fraction (<10%) of the BK was converted into another active metabolite, BK-(1-8), by CPN-like activity. The present study shows that the most critical step in plasma kinin metabolism, i.e., inactivation of BK, is mediated by ACE. Thus inhibition of plasma ACE activity would be cardioprotective by elevating the concentration of BK in the circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号