首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cranial neural crest cells (NCCs) migrate into the pharyngeal arches in three primary streams separated by two cranial neural crest (NC)-free zones. Multiple tissues have been implicated in the guidance of cranial NCC migration; however, the signals provided by these tissues have remained elusive. We investigate the function of semaphorins (semas) and their receptors, neuropilins (nrps), in cranial NCC migration in zebrafish. We find that genes of the sema3F and sema3G class are expressed in the cranial NC-free zones, while nrp2a and nrp2b are expressed in the migrating NCCs. sema3F/3G expression is expanded homogeneously in the head periphery through which the cranial NCCs migrate in lzr/pbx4 mutants, in which the cranial NC streams are fused. Antisense morpholino knockdown of Sema3F/3G or Nrp2 suppresses the abnormal cranial NC phenotype of lzr/pbx4 mutants, demonstrating that aberrant Sema3F/3G-Nrp2 signaling is responsible for this phenotype and suggesting that repulsive Sema3F/3G-Npn2 signaling normally contributes to the guidance of migrating cranial NCCs. Furthermore, global over-expression of sema3Gb phenocopies the aberrant cranial NC phenotype of lzr/pbx4 mutants when endogenous Sema3 ligands are knocked down, consistent with a model in which the patterned expression of Sema3 ligands in the head periphery coordinates the migration of Nrp-expressing cranial NCCs.  相似文献   

2.
Semaphorin-3A (Sema3A), a member of class 3 semaphorins, regulates axon and dendrite guidance in the nervous system. How Sema3A and its receptors plexin-As and neuropilins regulate neuronal guidance is unknown. We observed that in fyn- and cdk5-deficient mice, Sema3A-induced growth cone collapse responses were attenuated compared to their heterologous controls. Cdk5 is associated with plexin-A2 through the active state of Fyn. Sema3A promotes Cdk5 activity through phosphorylation of Tyr15, a phosphorylation site with Fyn. A Cdk5 mutant (Tyr15 to Ala) shows a dominant-negative effect on the Sema3A-induced collapse response. The sema3A gene shows strong interaction with fyn for apical dendrite guidance in the cerebral cortex. We propose a signal transduction pathway in which Fyn and Cdk5 mediate neuronal guidance regulated by Sema3A.  相似文献   

3.
roundabout (robo) family genes play key roles in axon guidance in a wide variety of animals. We have investigated the roles of the robo family members, robo, robo2, and robo3, in the guidance of sensory axons in the Drosophila embryo. In robo(-/-), slit(-/-), and robo(-/+) slit(-/+) mutants, lateral cluster sensory neurons misproject to cells and axons in the nearby ventral' (v') cluster. These phenotypes, together with the normal expression pattern of Slit and Robo, suggest that Slit ligand secreted from the epidermis interacts with Robo receptors on lateral cluster sensory growth cones to limit their exploration of nearby attractive substrates. The most common sensory axon phenotype seen in robo2(-/-) mutants was misprojection of dorsal cluster sensory axons away from their normal growth substrate, the transverse connective of the trachea. slit appears to play no role in this aspect of sensory axon growth. Robo2 is expressed, not on the dorsal sensory axons, but on the transverse connective. These results suggest a novel, non-cell-autonomous mechanism for axon guidance by robo family genes: Robo2 expressed on the trachea acts as an attractant for the dorsal sensory growth cones.  相似文献   

4.
AD Sabag  J Bode  D Fink  B Kigel  W Kugler  G Neufeld 《PloS one》2012,7(8):e42912
Class-3 semaphorins are secreted axon guidance factors. Some of these semaphorins have recently been characterized as suppressors of tumor progression. To determine if class-3 semaphorins can be used to inhibit the development of glioblastoma-multiforme tumors, we expressed recombinant sema-3A, 3B, 3D, 3E, 3F or 3G in U87MG glioblastoma cells. Sema3A and sema3B expressing cells contracted and changed shape persistently while cells expressing other semaphorins did not. Sema3A and sema3F differed from other semaphorins including sema3B as they also inhibited the proliferation of the cells and the formation of soft agar colonies. With the exception of sema3G and sema3B, expression of these semaphorins in U87MG cells inhibited significantly tumor development from subcutaneously implanted cells. Strong inhibition of tumor development was also observed following implantation of U87MG cells expressing each of the class-3 semaphorins in the cortex of mouse brains. Sema3D and sema3E displayed the strongest inhibitory effects and their expression in U373MG or in U87MG glioblastoma cells implanted in the brains of mice prolonged the survival of the mice by more then two folds. Furthermore, most of the mice that died prior to the end of the experiment did not develop detectable tumors and many of the mice survived to the end of the experiment. Most of the semaphorins that we have used here with the exception of sema3D were characterized previously as inhibitors of angiogenesis. Our results indicate that sema3D also functions as an inhibitor of angiogenesis and suggest that the anti-tumorigenic effects are due primarily to inhibition of tumor angiogenesis. These results indicate that class-3 semaphorins such as sema3D and sema3E could perhaps be used to treat glioblastoma patients.  相似文献   

5.
Plexina1 autoinhibition by the plexin sema domain   总被引:5,自引:0,他引:5  
Semaphorin 3A (Sema3A) binds to neuropilin-1 (NP1) and activates the transmembrane Plexin to transduce a repulsive axon guidance signal. Here, we show that Sema3 signals are transduced equally effectively by PlexinA1 or PlexinA2, but not by PlexinA3. Deletion analysis of the PlexinA1 ectodomain demonstrates that the sema domain prevents PlexinA1 activation in the basal state. Sema-deleted PlexinA1 is constitutively active, producing cell contraction, growth cone collapse, and inhibition of neurite outgrowth. The sema domain of PlexinA1 physically associates with the remainder of the PlexinA1 ectodomain and can reverse constitutive activation. Both the sema portion and the remainder of the ectodomain of PlexinA1 associate with NP1 in a Sema3A-independent fashion. Plexin A1 is autoinhibited by its sema domain, and Sema3A/NP1 releases this inhibition.  相似文献   

6.
Plexin receptors play a crucial role in the transduction of axonal guidance events elicited by semaphorin proteins. In Drosophila, Plexin A (PlexA) is a receptor for the transmembrane semaphorin semaphorin-1a (Sema-1a) and is required for motor and central nervous system (CNS) axon guidance in the developing embryonic nervous system. However, it remains unknown how PlexB functions during neural development and which ligands serve to activate this receptor. Here, we show that plexB, like plexA, is robustly expressed in the developing CNS and is required for motor and CNS axon pathfinding. PlexB and PlexA serve both distinct and shared neuronal guidance functions. We observe a physical association between these two plexin receptors in vivo and find that they can utilize common downstream signaling mechanisms. PlexB does not directly bind to the cytosolic semaphorin signaling component MICAL (molecule that interacts with CasL), but requires MICAL for certain axonal guidance functions. Ligand binding and genetic analyses demonstrate that PlexB is a receptor for the secreted semaphorin Sema-2a, suggesting that secreted and transmembrane semaphorins in Drosophila use PlexB and PlexA, respectively, for axon pathfinding during neural development. These results establish roles for PlexB in central and peripheral axon pathfinding, define a functional ligand for PlexB, and implicate common signaling events in plexin-mediated axonal guidance.  相似文献   

7.
The wiring of neuronal circuits requires complex mechanisms to guide axon subsets to their specific target with high precision. To overcome the limited number of guidance cues, modulation of axon responsiveness is crucial for specifying accurate trajectories. We report here a novel mechanism by which ligand/receptor co-expression in neurons modulates the integration of other guidance cues by the growth cone. Class 3 semaphorins (Sema3 semaphorins) are chemotropic guidance cues for various neuronal projections, among which are spinal motor axons navigating towards their peripheral target muscles. Intriguingly, Sema3 proteins are dynamically expressed, forming a code in motoneuron subpopulations, whereas their receptors, the neuropilins, are expressed in most of them. Targeted gain- and loss-of-function approaches in the chick neural tube were performed to enable selective manipulation of Sema3C expression in motoneurons. We show that motoneuronal Sema3C regulates the shared Sema3 neuropilin receptors Nrp1 and Nrp2 levels in opposite ways at the growth cone surface. This sets the respective responsiveness to exogenous Nrp1- and Nrp2-dependent Sema3A, Sema3F and Sema3C repellents. Moreover, in vivo analysis revealed a context where this modulation is essential. Motor axons innervating the forelimb muscles are exposed to combined expressions of semaphorins. We show first that the positioning of spinal nerves is highly stereotyped and second that it is compromised by alteration of motoneuronal Sema3C. Thus, the role of the motoneuronal Sema3 code could be to set population-specific axon sensitivity to limb-derived chemotropic Sema3 proteins, therefore specifying stereotyped motor nerve trajectories in their target field.  相似文献   

8.
Neuropilin-1 and neuropilin-2 bind differentially to different class 3 semaphorins and are thought to provide the ligand-binding moieties in receptor complexes mediating repulsive responses to these semaphorins. Here, we have studied the function of neuropilin-2 through analysis of a neuropilin-2 mutant mouse, which is viable and fertile. Repulsive responses of sympathetic and hippocampal neurons to Sema3F but not to Sema3A are abolished in the mutant. Marked defects are observed in the development of several cranial nerves, in the initial central projections of spinal sensory axons, and in the anterior commissure, habenulo-interpeduncular tract, and the projections of hippocampal mossyfiber axons in the infrapyramidal bundle. Our results show that neuropilin-2 is an essential component of the Sema3F receptor and identify key roles for neuropilin-2 in axon guidance in the PNS and CNS.  相似文献   

9.
Navigation of motoneuronal growth cones toward the somatic musculature in Drosophila serves as a model system to unravel the molecular mechanisms of axon guidance and target selection. In a large-scale mutagenesis screen, we identified piranha, a motor axon guidance mutant that shows strong defects in the neuromuscular connectivity pattern. In piranha mutant embryos, permanent defasciculation errors occur at specific choice points in all motor pathways. Positional cloning of piranha revealed point mutations in tolloid-related 1 (tlr1), an evolutionarily conserved gene encoding a secreted metalloprotease. Ectopic expression of Tlr1 in several tissues of piranha mutants, including hemocytes, completely restores the wild-type innervation pattern, indicating that Tlr1 functions cell non-autonomously. We further show that loss-of-function mutants of related metalloproteases do not have motor axon guidance defects and that the respective proteins cannot functionally replace Tlr1. tlr1, however, interacts with sidestep, a muscle-derived attractant. Double mutant larvae of tlr1 and sidestep show an additive phenotype and lack almost all neuromuscular junctions on ventral muscles, suggesting that Tlr1 functions together with Sidestep in the defasciculation process.  相似文献   

10.
From the initial stages of axon outgrowth to the formation of a functioning synapse, neuronal growth cones continuously integrate and respond to multiple guidance cues. To investigate the role of semaphorins in the establishment of appropriate axon trajectories, we have characterized a novel secreted semaphorin in grasshopper, gSema 2a. Sema 2a is expressed in a gradient in the developing limb bud epithelium during Ti pioneer axon outgrowth. We demonstrate that Sema 2a acts as chemorepulsive guidance molecule critical for axon fasciculation and for determining both the initial direction and subsequent pathfinding events of the Ti axon projection. Interestingly, simultaneous perturbation of both secreted Sema 2a and transmembrane Sema I results in a broader range and increased incidence of abnormal Ti pioneer axon phenotypes, indicating that different semaphorin family members can provide functionally distinct guidance information to the same growth cone in vivo.  相似文献   

11.
Semaphorins家族是一类以结构中具有sema区域为共同特征的蛋白,Semaphorin4D(Sema4D)是其成员之一.Sema4D与受体丛状蛋白B1(PlexinB1)和分化抗原簇72(cluster of differentiation antigen72,CD72)结合,通过多种信号转导途径,在神经系统的轴突导向,免疫系统中T、B细胞的活化和免疫调节中发挥关键作用.最近发现,Sema4D在许多人体肿瘤组织中高表达,且对血管发生及肿瘤侵袭转移起重要作用.本文旨在对Sema4D的结构、作用机制及生物学功能的研究最新进展作一综述.  相似文献   

12.
Semaphorins are a large class of proteins that function throughout the nervous system to guide axons. It had previously been shown that Semaphorin 5A (Sema5A) was a bifunctional axon guidance cue for mammalian midbrain neurons. We found that zebrafish sema5A was expressed in myotomes during the period of motor axon outgrowth. To determine whether Sema5A functioned in motor axon guidance, we knocked down Sema5A, which resulted in two phenotypes: a delay in motor axon extension into the ventral myotome and aberrant branching of these motor axons. Both phenotypes were rescued by injection of full-length rat Sema5A mRNA. However, adding back RNA encoding the sema domain alone significantly rescued the branching phenotype in sema5A morphants. Conversely, adding back RNA encoding the thrombospondin repeat (TSR) domain alone into sema5A morphants exclusively rescued delay in ventral motor axon extension. Together, these data show that Sema5A is a bifunctional axon guidance cue for vertebrate motor axons in vivo. The TSR domain promotes growth of developing motor axons into the ventral myotome whereas the sema domain mediates repulsion and keeps these motor axons from branching into surrounding myotome regions.  相似文献   

13.
Class 3 semaphorins (Sema3) are a family of secreted proteins that were originally identified as axon guidance factors mediating their signal transduction by forming complexes with neuropilins and plexins. However, the wide expression pattern of Sema3 suggested additional functions other than those associated with the nervous system, and indeed many studies have now indicated that Sema3 proteins and their receptors play a role in angiogenesis. The present review specifically focuses on recent evidence for this role in both physiological and pathological angiogenesis.  相似文献   

14.
Semaphorins are a large family of secreted and cell surface molecules that guide neural growth cones to their targets during development. Some semaphorins are expressed in cells and tissues beyond the nervous system suggesting the possibility that they function in the development of non-neural tissues as well. In the trunk of zebrafish embryos endothelial precursors (angioblasts) are located ventral and lateral to the somites. The angioblasts migrate medially and dorsally along the medial surface of the somites to form the dorsal aorta just ventral to the notochord. Here we show that in zebrafish Sema3a1 is involved in angioblast migration in vivo. Expression of sema3a1 in somites and neuropilin 1, which encodes for a component of the Sema3a receptor, in angioblasts suggested that Sema3a1 regulates the pathway of the dorsally migrating angioblasts. Antisense knockdown of Sema3a1 inhibited the formation of the dorsal aorta. Induced ubiquitous expression of sema3a1 in hsp70:(gfp)sema3a1(myc) transgenic embryos inhibited migration of angioblasts ventral and lateral to the somites and retarded development of the dorsal aorta, resulting in severely reduced blood circulation. Furthermore, analysis of cells that express angioblast markers following induced expression of sema3a1 or in a mutant that changes the expression of sema3a1 in the somites confirmed these results. These data implicate Sema3a1, a guidance factor for neural growth cones, in the development of the vascular system.  相似文献   

15.
Semaphorins are secreted or transmembrane proteins that regulate cell motility and attachment in axon guidance, vascular growth, immune cell regulation and tumour progression. The main receptors for semaphorins are plexins, which have established roles in regulating Rho-family GTPases. Recent work shows that plexins can also influence R-Ras, which, in turn, can regulate integrins. Such regulation is probably a common feature of semaphorin signalling and contributes substantially to our understanding of semaphorin biology.  相似文献   

16.
Gap junctions are proteinaceous channels that reside at the plasma membrane and permit the exchange of ions, metabolites, and second messengers between neighboring cells. Connexin proteins are the subunits of gap junction channels. Mutations in zebrafish cx43 cause the short fin (sof(b123)) phenotype which is characterized by short fins due to defects in length of the bony fin rays. Previous findings from our lab demonstrate that Cx43 is required for both cell proliferation and joint formation during fin regeneration. Here we demonstrate that semaphorin3d (sema3d) functions downstream of Cx43. Semas are secreted signaling molecules that have been implicated in diverse cellular functions such as axon guidance, cell migration, cell proliferation, and gene expression. We suggest that Sema3d mediates the Cx43-dependent functions on cell proliferation and joint formation. Using both in situ hybridization and quantitative RT-PCR, we validated that sema3d expression depends on Cx43 activity. Next, we found that knockdown of Sema3d recapitulates all of the sof(b123) and cx43-knockdown phenotypes, providing functional evidence that Sema3d acts downstream of Cx43. To identify the potential Sema3d receptor(s), we evaluated gene expression of neuropilins and plexins. Of these, nrp2a, plxna1, and plxna3 are expressed in the regenerating fin. Morpholino-mediated knockdown of plxna1 did not cause cx43-specific defects, suggesting that PlexinA1 does not function in this pathway. In contrast, morpholino-mediated knockdown of nrp2a caused fin overgrowth and increased cell proliferation, but did not influence joint formation. Moreover, morpholino-mediated knockdown of plxna3 caused short segments, influencing joint formation, but did not alter cell proliferation. Together, our findings reveal that Sema3d functions in a common molecular pathway with Cx43. Furthermore, functional evaluation of putative Sema3d receptors suggests that Cx43-dependent cell proliferation and joint formation utilize independent membrane-bound receptors to mediate downstream cellular phenotypes.  相似文献   

17.
Although mosquito genome projects have uncovered orthologues of many known developmental regulatory genes, extremely little is known about mosquito development. In this study, the role of semaphorin-1a (sema1a) was investigated during vector mosquito embryonic ventral nerve cord development. Expression of sema1a and the plexin A (plexA) receptor are detected in the embryonic ventral nerve cords of Aedes aegypti (dengue vector) and Anopheles gambiae (malaria vector), suggesting that Sema1a signaling may regulate mosquito nervous system development. Analysis of sema1a function was investigated through siRNA-mediated knockdown in A. aegypti embryos. Knockdown of sema1a during A. aegypti development results in a number of nerve cord phenotypes, including thinning, breakage, and occasional fusion of the longitudinal connectives, thin or absent commissures, and general distortion of the nerve cord. Although analysis of Drosophila melanogaster sema1a loss-of-function mutants uncovered many similar phenotypes, aspects of the longitudinal phenotypes differed between D. melanogaster and A. aegypti. The results of this investigation suggest that Sema1a is required for development of the insect ventral nerve cord, but that the developmental roles of this guidance molecule have diverged in dipteran insects.  相似文献   

18.
Semaphorins are extracellular proteins that regulate axon guidance and morphogenesis by interacting with a variety of cell surface receptors. Most semaphorins interact with plexin-containing receptor complexes, although some interact with non-plexin receptors. Class 2 semaphorins are secreted molecules that control axon guidance and epidermal morphogenesis in Drosophila and Caenorhabditis elegans. We show that the C. elegans class 2 semaphorin MAB-20 binds the plexin PLX-2. plx-2 mutations enhance the phenotypes of hypomorphic mab-20 alleles but not those of mab-20 null alleles, indicating that plx-2 and mab-20 act in a common pathway. Both mab-20 and plx-2 mutations affect epidermal morphogenesis during embryonic and in postembryonic development. In both contexts, plx-2 null mutant phenotypes are much less severe than mab-20 null phenotypes, indicating that PLX-2 is not essential for MAB-20 signaling. Mutations in the ephrin efn-4 do not synergize with mab-20, indicating that EFN-4 may act in MAB-20 signaling. EFN-4 and PLX-2 are coexpressed in the late embryonic epidermis where they play redundant roles in MAB-20-dependent cell sorting.  相似文献   

19.
The semaphorins are a large, evolutionarily conserved family of signaling molecules with broad functions during development. The class 3 semaphorins are a subclass of secreted semaphorins found in vertebrates. There have been six class 3 semaphorins identified to date (sema3A to sema3F) and some have been shown to function in axon guidance and cardiovascular development. However, the functions of many class 3 semaphorins and their potential interactions in vivo are still not well understood. As a step toward understanding the actions of all class 3 semaphorins in vivo, we have cloned and analyzed the developmental expression pattern of a novel zebrafish class 3 semaphorin, sema3H [corrected] sema3H [corrected] is expressed in a dynamic pattern throughout the first 3 days of development. It is expressed in the adaxial cells of the somite during somitogenesis. In the brain, sema3H [corrected] is expressed in cell clusters in the midbrain and diencephalon, and is expressed in the telencephalon in close proximity to the olfactory epithelium. sema3H [corrected] also is expressed in the pharyngeal arches, the pectoral fin bud, and the developing pronephros. These results provide a basis for studying how expression of multiple semaphorins could be essential for aspects of early development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号