共查询到20条相似文献,搜索用时 15 毫秒
1.
An essential function of C-cells is to monitor extracellular Ca2+ concentration ([Ca2+]e) and to respond to changes in [Ca2+]e by regulating hormone secretion. Using the calcitonin-secreting rat C-cell line rMTC 44-2, we have investigated a possible tight linkage between [Ca2+]e and cytosolic free Ca2+ ([Ca/+]i). We have demonstrated, using the Ca2+ indicator Quin 2, that the [Ca2+]i is particularly sensitive to changes in [Ca2+]e. Sequential increases in [Ca2+]e as small as 0.1 mM evoke clear elevations in [Ca2+]i. In contrast, other cell types tested did not alter their [Ca2+]i in response to increasing [Ca2+]e even to levels as high as 4.0 mM. Sequential 1.0 mM increments in [Ca2+]e caused the [Ca2+]i to rise from a base line of 357 +/- 20 nM Ca2+i at 1.0 mM Ca2+e to a maximum of 1066 +/- 149 nM Ca2+i at 5.0 mM Ca2+e. [Ca2+]e above 2.0 mM produced a biphasic response in [Ca2+]i consisting of an immediate (less than 5 s) spike followed by a decay to a new plateau. Treatment of rMTC 44-2 cells with either 50 mM K+ or 100 nM ionomycin at 1.0 mM Ca2+e caused an immediate spike in [Ca2+]i to micromolar levels. Pretreatment with EGTA or verapamil inhibited completely the increase in [Ca2+]i induced by 50 mM K+. However, pretreatment with EGTA only slightly attenuated the spike phase in [Ca2+]i produced by ionomycin, demonstrating that ionomycin released intracellular stores of calcium. We conclude that rMTC 44-2 cells regulate [Ca2+]i by monitoring small physiological changes in [Ca2+]e, the primary secretagogue for C-cells. 相似文献
2.
3.
The involvement of extracellular Ca2+ and Ca2+ influx across the plasma membrane in parathyroid hormone (PTH) secretion was investigated in vitro using a new preparation of bovine parathyroid cells. Incubation of these cells in the presence of 25 microM or 2.5 microM free ambient Ca2+ induced a maximal rate of PTH secretion. Low free Ca2+ secretion is not associated with changes in membrane permeability, requires metabolic energy, and is reversible. The Ca2+ channel blocker D600 had no effect on either 45Ca-influx or PTH secretion in these cells. These results, showing that extracellular Ca2+ and Ca2+ influx across the plasma membrane are not required for PTH secretion by parathyroid cells, emphasize the differences in the cellular mechanisms underlying the secretion of PTH vs that of other secretory cells. 相似文献
4.
R Muff E F Nemeth S Haller-Brem J A Fischer 《Archives of biochemistry and biophysics》1988,265(1):128-135
The two dihydropyridine enantiomers, (+)202-791 and (-)202-791, that act as voltage-sensitive Ca2+ channel agonist and antagonist, respectively, were examined for effects on cytosolic Ca2+ concentrations ([Ca2+]i) and on hormones secretion in dispersed bovine parathyroid cells and a rat medullary thyroid carcinoma (rMTC) cell line. In both cell types, small increases in the concentration of extracellular Ca2+ evoked transient followed by sustained increases in [Ca2+]i, as measured with fura-2. Increases in [Ca2+]i obtained by raised extracellular Ca2+ were associated with a stimulation of secretion of calcitonin (CT) and calcitonin gene-related peptide (CGRP) in rMTC cells, but an inhibition of secretion of parathyroid hormone (PTH) in parathyroid cells. The Ca2+ channel agonist (+)202-791 stimulated whereas the antagonist (-)202-791 inhibited both transient and sustained increases in [Ca2+]i induced by extracellular Ca2+ in rMTC cells. Secretion of CT and CGRP was correspondingly enhanced and depressed by (+)202-791 and (-)202-791, respectively. In contrast, neither the agonist nor the antagonist affected [Ca2+]i and PTH secretion in parathyroid cells. Depolarizing concentrations of extracellular K+ increased [Ca2+]i and hormone secretion in rMTC cells and both these responses were potentiated or inhibited by the Ca2+ channel agonist or antagonist, respectively. The results suggest a major role of voltage-sensitive Ca2+ influx in the regulation of cytosolic Ca2+ and hormones secretion in rMTC cells. Parathyroid cells, on the other hand, appear to lack voltage-sensitive Ca2+ influx pathways and regulate PTH secretion by some alternative mechanism. 相似文献
5.
In clonal rat pituitary cells (GH cells), thyrotropin-releasing hormone (TRH) induced a pattern of changes in cytosolic free calcium concentrations [( Ca2+]i) composed of two phases: an acute spike phase to micromolar levels which decayed (t1/2 = 8 s) to a near-basal concentration and then rose to a prolonged plateau phase of elevated [Ca2+]i (as measured using Quin 2). Closely following these changes in [Ca2+]i, TRH stimulated a rapid "spike phase" of pronounced, but brief, enhancement of the rate of prolactin and growth-hormone secretion and then a "plateau phase" of prolonged enhancement. These two phases were dissociated using two classes of pharmacologic agents: the ionophore ionomycin, and a calcium channel antagonist nifedipine. Ionomycin (100 nM) specifically blocked (less than 90%) the spike phase of TRH action by rapidly emptying the TRH-regulated reservoir of cellular Ca2+ to generate a TRH-like spike in [Ca2+]i; nifedipine inhibited (less than 50%) the plateau phase of TRH-induced changes in [Ca2+]i and hormone secretion by preventing Ca2+ influx through voltage-dependent Ca2+ channels. These agents demonstrated that the TRH-induced spike in [Ca2+]i in GH cells is caused by release of an ionomycin-sensitive pool of cellular Ca2+ with a small component (10%) due to influx of extracellular Ca2+. The TRH-induced plateau in [Ca2+]i is due to influx of extracellular Ca2+, about half of which enters through voltage-dependent calcium channels and half of which enters via nifedipine/verapamil-insensitive influx. The TRH-induced spike in [Ca2+]i led to a burst in hormone secretion, and the plateau in [Ca2+]i produced a prolonged enhancement of secretion; the spike and plateau phases were generated independently by TRH. A spike in [Ca2+]i is necessary, but not sufficient, to induce burst release of hormone, while the prolonged rate of hormone secretion is intimately related to the steady-state [Ca2+]i. 相似文献
6.
Thyrotropin-releasing hormone-induced spike and plateau in cytosolic free Ca2+ concentrations in pituitary cells. Relation to prolactin release 总被引:9,自引:0,他引:9
Using the acetoxymethyl ester of "Quin 2," a fluorescent Ca2+-indicator, we have loaded prolactin (PRL)-producing rat pituitary cells with non-toxic concentrations of Quin 2 and quantitated changes in cytosolic free calcium concentration ( [Ca2+]i) during stimulation of PRL release by thyrotropin-releasing hormone (TRH) and 40 mM K+. TRH induced a biphasic response, with an immediate (less than 1 s) spike in [Ca2+]i from basal levels (350 +/- 80 nM) to a peak of 1-3 microM, which decayed rapidly (t 1/2 = 8 s) to a near basal nadir, then rising to a plateau in [Ca2+]i of 500-800 nM. The TRH-induced spike phase was attenuated but not abolished by prior addition of EGTA, while the plateau phase was eliminated by EGTA. Addition of 40 mM K+ caused an immediate spike in [Ca2+]i to 1-3 microM which equilibrated slowly (t 1/2 = 1 min) directly to a plateau of 600-800 nM. The K+-induced spike and plateau phases were both abolished by prior addition of EGTA. The biphasic nature of TRH action on [Ca2+]i parallels the biphasic actions of TRH on 45Ca2+ fluxes and the biphasic release of PRL by GH cells in suspension. These findings provide evidence that Ca2+-dependent agonist-mediated increases in [Ca2+]i and hormone release are linked, and may generally have two modes: an acute "spike" mode, dependent primarily on redistribution of intracellular Ca2+ stores; and a sustained "plateau" mode, dependent on influx of extracellular Ca2+. 相似文献
7.
Insulin release independent of a rise in cytosolic free Ca2+ by forskolin and phorbol ester 总被引:6,自引:0,他引:6
The role of cytosolic free Ca2+ in insulin release was evaluated using isolated rat pancreatic islets permeabilized with digitonin and incubated in Ca-EGTA buffers to fix free Ca2+ concentration at arbitrary levels. Ca2+ induced insulin release in a concentration-dependent manner with the threshold being between 0.1 and 1 microM. The hormone release was increased by forskolin and 12-O-tetradecanoyl phorbol-13-acetate (TPA), a potent activator of adenylate cyclase and that of protein kinase C, respectively. The findings suggest that activation of both protein kinase A and protein kinase C modulate insulin release without a concomitant increase in cytosolic free Ca2+. 相似文献
8.
The T-cell antigen receptor regulates sustained increases in cytoplasmic free Ca2+ through extracellular Ca2+ influx and ongoing intracellular Ca2+ mobilization. 总被引:9,自引:2,他引:9 下载免费PDF全文
Signal transduction by the T-cell antigen receptor involves the turnover of polyphosphoinositides and an increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). This increase in [Ca2+]i is due initially to the release of Ca2+ from intracellular stores, but is sustained by the influx of extracellular Ca2+. To examine the regulation of sustained antigen-receptor-mediated increases in [Ca2+]i, we studied the relationships between extracellular Ca2+ influx, the mobilization of Ca2+ from intracellular stores, and the contents of inositol polyphosphates after stimulation of the antigen receptor on a human T-cell line, Jurkat. We demonstrate that sustained antigen-receptor-mediated increases in [Ca2+]i are associated with ongoing depletion of intracellular Ca2+ stores. When antigen-receptor-ligand interactions are disrupted, [Ca2+]i and inositol 1,4,5-trisphosphate return to basal values over 3 min. Under these conditions, intracellular Ca2+ stores are repleted if extracellular Ca2+ is present. There is a tight temporal relationship between the fall in [Ca2+]i, the return of inositol 1,4,5-trisphosphate to basal values, and the repletion of intracellular Ca2+ stores. Reversal of the increase in [Ca2+]i preceeds any fall in inositol tetrakisphosphate by 2 min. These studies suggest that sustained antigen-receptor-induced increases in [Ca2+]i, although dependent on extracellular Ca2+ influx, are also regulated by ongoing inositol 1,4,5-trisphosphate-mediated intracellular Ca2+ mobilization. In addition, an elevated concentration of inositol tetrakisphosphate in itself is insufficient to sustain an increase in [Ca2+]i within Jurkat cells. 相似文献
9.
Hormone-induced rise in cytosolic Ca2+ in axolotl hepatocytes: properties of the Ca2+ influx channel 总被引:1,自引:0,他引:1
Calcium entry in nonexcitable cells occurs throughCa2+-selective channels activatedsecondarily to store depletion and/or through receptor- orsecond messenger-operated channels. In amphibian liver, hormones thatstimulate the production of adenosine 3',5'-cyclic monophosphate (cAMP) also regulate the opening of an ion gate in theplasma membrane, which allows a noncapacitative inflow ofCa2+. To characterize thisCa2+ channel, we studied theeffects of inhibitors of voltage-dependent Ca2+ channels and of nonselectivecation channels on 8-bromoadenosine 3',5'-cyclicmonophosphate (8-BrcAMP)-dependentCa2+ entry in single axolotlhepatocytes. Ca2+ entry provokedby 8-BrcAMP in the presence of physiologicalCa2+ followed first-order kinetics(apparent Michaelis constant = 43 µM at the cellsurface). Maximal values of cytosolicCa2+ (increment ~300%) werereached within 15 s, and the effect was transient (half time of 56 s).We report a strong inhibition of cAMP-dependentCa2+ entry by nifedipine[half-maximal inhibitory concentration(IC50) = 0.8 µM], byverapamil (IC50 = 22 µM), andby SK&F-96365 (IC50 = 1.8 µM).Depolarizing concentrations of K+were without effect. Gadolinium and the anti-inflammatory compound niflumate, both inhibitors of nonselective cation channels, suppressed Ca2+ influx. This "profile"indicates a novel mechanism ofCa2+ entry in nonexcitable cells. 相似文献
10.
11.
R. L. Dormer 《Bioscience reports》1983,3(3):233-240
The Ca2+-activated photoprotein aequorin has been incorporated into intact, isolated rat pancreatic acini by a hypotonic swelling method. The isolated acini retained normal secretory responses after loading with aequorin. Increases in cytosolic Ca2+ concentration in response to a physiological secretagogue, carbamylcholine, and to divalent-cation ionophore A23187 have been demonstrated. Simultaneous measurement of the dynamics of enzyme secretion and changes in cytosolic Ca2+ concentration has been achieved using a newly developed apparatus. 相似文献
12.
The properties of the Ca2+, Mg2+-ATPase of erythrocyte membranes from patients with cystic fibrosis (CF) were extensively compared to that of healthy controls. Following removal of an endogenous membrane inhibitor of the ATPase, activation of the enzyme by Ca2+, calmodulin, limited tryptic digestion or oleic acid, as well as inhibition by trifluoperazine, were studied. The only properties found to be significantly different (CF cells vs controls) were calmodulin-stimulated peak activity (90 vs 101, P less than 0.02) and trypsin-activated peak activity (92 vs 102, P less than 0.02). No significant difference could be measured in the steady-state Ca2+-dependent phosphorylation of CF and control erythrocyte membranes indicating similar numbers of enzyme molecules per cell. The functional state of Ca2+ homeostasis in intact erythrocytes was investigated by measuring the resting cytosolic free Ca2+ levels using quin-2. Both CF and control erythrocytes maintained cytosolic free Ca2+ between 20 to 30 nM. Addition of 50 uM trifluoperazine resulted in an increase in erythrocyte cytosolic free Ca2+ to about 50 nM in both CF and control cells. Estimates of erythrocyte membrane permeability using the steady-state uptake of 45Ca into intact erythrocytes revealed no differences between CF and control cells. These results confirm that there is a small decrease in the calmodulin-stimulated activity of the erythrocyte Ca2+, Mg2+-ATPase in CF. However, this deficit is apparently not large enough to impair the ability of the CF erythrocyte to maintain normal resting levels of cytosolic free Ca2+. 相似文献
13.
Naro F De Arcangelis V Coletti D Molinaro M Zani B Vassanelli S Reggiani C Teti A Adamo S 《American journal of physiology. Cell physiology》2003,284(4):C969-C976
Cytoplasmic Ca2+concentration ([Ca2+]i) variation is akey event in myoblast differentiation, but the mechanism by which itoccurs is still debated. Here we show that increases of extracellular Ca2+ concentration ([Ca2+]o)produced membrane hyperpolarization and a concentration-dependent increase of [Ca2+]i due to Ca2+influx across the plasma membrane. Responses were not related toinositol phosphate turnover and Ca2+-sensing receptor.[Ca2+]o-induced[Ca2+]i increase was inhibited byCa2+ channel inhibitors and appeared to be modulated byseveral kinase activities. [Ca2+]i increasewas potentiated by depletion of intracellular Ca2+ storesand depressed by inactivation of the Na+/Ca2+exchanger. The response to arginine vasopressin (AVP), which inducesinositol 1,4,5-trisphosphate-dependent[Ca2+]i increase in L6-C5 cells, was notmodified by high [Ca2+]o. On the contrary,AVP potentiated the [Ca2+]i increase in thepresence of elevated [Ca2+]o. Other clones ofthe L6 line as well as the rhabdomyosarcoma RD cell line and thesatellite cell-derived C2-C12 line expressed similar responses to high[Ca2+]o, and the amplitude of the responseswas correlated with the myogenic potential of the cells. 相似文献
14.
Platelet-activating factor (PAF) is an important participant in the inflammatory process. We studied the regulation of PAF activity by capsaicin in human promyelocytic leukemia HL-60 cells. Capsaicin inhibited PAF-induced superoxide production in a concentration-dependent manner. In addition to PAF, the fMLP- and extracellular ATP-induced superoxide productions were inhibited by capsaicin, whereas PMA-induced superoxide production was not affected. In the PAF-stimulated cytosolic Ca2+ increase, capsaicin inhibited in particular the sustained portion of the raised Ca2+ level without attenuation of the peak height. In the absence of extracellular Ca2+, the PAF-induced Ca2+ elevation was not inhibited by capsaicin because capsaicin only inhibited the Ca2+ influx from the extracellular space. In addition, capsaicin did not affect PAF-induced inositol 1,4,5-trisphosphate production, suggesting that phospholipase C activation by PAF is not affected by capsaicin. Store-operated Ca2+ entry (SOCE) induced by thapsigargin was inhibited by capsaicin in a concentration-dependent manner. This capsaicin effect was also observed on thapsigargin-induced Ba2+ and Mn2+ influx. Furthermore, capsaicin's inhibitory effect on the thapsigargin-induced Ca2+ rise overlapped with that of SK&F96365, an inhibitor of SOCE. Both capsaicin and SK&F96365 also inhibited PAF-induced cytosolic superoxide generation in HL-60 cells differentiated by all-trans-retinoic acid. Our data suggest that capsaicin exerts its anti-inflammatory effect by inhibiting SOCE elicited via PLC activation, which occurs upon PAF activation and results in the subsequent superoxide production. 相似文献
15.
The kinetics of changes in cytosolic free Ca2+ ([Ca2+]i) were determined in individual rat pancreatic acini by microfluorimetry. Three major findings are reported. First, at maximal stimulatory concentrations for amylase release, both caerulein and bombesin induced an initial rise in [Ca2+]i followed by prolonged secondary oscillations of smaller amplitude. The latter effect was not observed with supramaximal doses of caerulein. Second, these cyclic changes were dependent, at least in part, on extracellular Ca2+. Finally, comparison of the threshold doses for [Ca2+]i mobilization and enzyme discharge demonstrated that pathways independent of an elevation of [Ca2+]i control the secretory activity of pancreatic acini at low, picomolar agonist concentrations. 相似文献
16.
Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3)-mobilizing muscarinic agonists to induce secretion reflects the fact that the 50 nM rise in [Ca2+]i they elicit is insufficient to trigger the exocytotic machinery. A recent report, however, has demonstrated that some of the nicotine-induced rise in [Ca2+]i could originate from the InsP3-releasable Ca2+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from the InsP3-sensitive store and, additionally, that the Ca2+ response to TG was composed of two distinct, temporally separated, components: a) a slow (1 min) increase in [Ca2+]i to approximately 50 nM above basal that was independent of extracellular Ca2+ and b) the maintenance of this level at a new steady-state that was dependent on the continual entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration: studies on Ca2+ channels in rat parotid cells 总被引:1,自引:0,他引:1
1. Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration [( Ca2+]i)were studied using quin2. 2. Nicardipine (NIC), diltiazem (DIL) and verapamil (VER) had no effect on the rise in [Ca2+]i evoked by carbachol. Methoxamine-elevated [Ca2+]i was inhibited by VER but not by NIC and DIL. 3. All Ca2+ antagonists tested produced a decline of [Ca2+]i elevated by isoproterenol to the resting level. 4. The addition of 30 mM K+ gradually elevated [Ca2+]i in normal and Ca2+-free media, but it did not increase 45Ca2+ uptake into cells. BAY K 8644 did not increase [Ca2+]i. 5. We suggest that voltage-sensitive Ca2+ channels are lacking and that at least 2 distinct receptor-operated Ca2+ channels exist in rat parotid cells. 相似文献
18.
Effect of extracellular Ca2+ on plasma membrane Ca2+ inflow and cytoplasmic free Ca2+ in isolated hepatocytes 总被引:2,自引:0,他引:2
An initial rapid phase and a subsequent slow phase of 45Ca2+ uptake were observed following the addition of 45Ca2+ to Ca2+-deprived hepatocytes. The magnitude of the rapid phase increased 15-fold over the range 0.1-11 mM extracellular Ca2+ (Ca2+o) and was a linear function of [Ca2+]o. The increases in the rate of 45Ca2+ uptake were accompanied by only small increases in the intracellular free Ca2+ concentration. In cells made permeable to Ca2+ by treatment with saponin, the rate of 45Ca2+ uptake (measured at free Ca2+ concentrations equal to those in the cytoplasm of intact cells) increased as the concentration of saponin increased from 1.4 to 2.5 micrograms per mg wet weight cells. Rates of 45Ca2+ uptake by cells permeabilized with an optimal concentration of saponin were comparable with those of intact cells incubated at physiological [Ca2+o], but were substantially lower than those for intact cells incubated at high [Ca2+o]. It is concluded that Ca2+ which enters the hepatocyte across the plasma membrane is rapidly removed by binding and transport to intracellular sites and by the plasma membrane (Ca2+ + Mg2+)-ATPase and the plasma membrane Ca2+ inflow transporter is not readily saturated with Ca2+o. 相似文献
19.
Receptor-stimulated phosphoinositide turnover leads to activation of Na+/H+ exchange and subsequent intracellular alkalinization. To probe the effect of increased intracellular pH (pHi) on Ca2+ homeostasis in cultured bovine aortic endothelial cells (BAEC), we studied the effect of weak bases, ammonium chloride (NH4Cl) and methylamine (agents which increase pHi by direct passive diffusion), on resting and ATP (purinergic receptor agonist)-induced Ca2+ fluxes. Changes in cytosolic free Ca2+ ([Ca2+]i) or pHi were monitored in BAEC monolayers using the fluorescent dyes, fura-2 or 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, respectively. NH4Cl-induced, dose-dependent (5-20 mM) increases in [Ca2+]i (maximum change = 195 +/- 26 nM) which were temporally similar to the NH4Cl-induced pHi increases. Methylamine (20 mM) induced a more sustained pHi increase and also stimulated a prolonged [Ca2+]i increase. When BAEC were bathed in HCO3- buffer, removal of extracellular CO2/bicarbonate caused pHi to increase and also induced [Ca2+]i to increase transiently. Extracellular Ca2+ removal did not abolish the rapid NH4Cl-induced rise in [Ca2+]i, although the response was blunted and more transient. NH4Cl addition to BAEC cultures resulted in an increase in 45Ca efflux and decrease in total cell 45Ca content. BAEC treatment with ATP (100 microM) to deplete inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools completely blocked the NH4Cl (20 mM)-induced rise in [Ca2+]i. Likewise, prior NH4Cl addition partially inhibited ATP-induced increases in [Ca2+]i, as well as slowed the frequency of repetitive [Ca2+]i spikes in single endothelial cells due to agonist. NH4Cl augmented the rate of [Ca2+]i increase that occurs in response to the depletion of agonist-sensitive intracellular Ca2+ pools. However, the internal Ca2+ store remained depleted during the continued presence of NH4Cl, as indicated by a decreased [Ca2+]i response to ATP in Ca2(+)-free medium. Finally, NH4Cl exerted these actions without affecting basal or ATP-stimulated IP3 formation. These observations provide direct evidence that increased pHi leads to Ca2+ mobilization from an agonist-sensitive pool and impairs Ca2+ pool(s) refilling mechanisms without altering cellular IP3 levels. 相似文献
20.
Glyceraldehyde, but not cyclic AMP-stimulated insulin release is preceded by a rise in cytosolic free Ca2+ 总被引:3,自引:0,他引:3
The dynamics of changes in membrane potential, cytosolic free Ca2+, [Ca2+]i and immunoreactive insulin release were assessed in RINm5F cells. Membrane depolarization and a rise in [Ca2+]i preceded the stimulation of insulin release by D-glyceraldehyde. Forskolin, which raised the cellular cyclic AMP levels, stimulated insulin release without changing membrane potential or [Ca2+]i. It is concluded that cyclic AMP acts on insulin release not by mobilizing Ca2+ but by another, as yet undefined, mechanism. 相似文献