首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteins which recognize specific sequences of DNA play a fundamental role in the regulation of protein synthesis in all organisms. A particular helix of the bacterial protein lac repressor recognizes the bases in the major groove of the lac operator. We show that the first two residues of this recognition helix interact independently with two base pairs. This allows us in many cases to predict repression as an indicator of strength of the repressor-operator complex. Rules of recognition can be derived for 16 symmetric operators. They also apply to the gal repressor and possibly to other bacterial repressors.  相似文献   

2.
The lambda repressor provides a model system for biophysical studies of DNA recognition by the helix-turn-helix motif. We describe laser Raman studies of the lambda operator sites OL1 and OR3 and their interaction with the DNA-binding domain of lambda repressor (residues 1-102). Raman spectra of the two DNA sites exhibit significant differences attributable to interstrand purine-purine steps that differ in the two oligonucleotides. Remarkably, the conformation of each operator is significantly and specifically altered by repressor binding. Protein recognition, which involves hydrogen-bond formation and hydrophobic contacts in the major groove, induces subtle changes in DNA Raman bands of interacting groups. These include (i) site-specific perturbations to backbone phosphodiester geometry at AT-rich domains, (ii) hydrophobic interaction at thymine 5CH3 groups, (iii) hydrogen bonding to guanine 7N and 6C = O acceptors, and (iv) alterations in sugar pucker within the C2'-endo (B-DNA) family. These perturbations differ between aqueous OL1 and OR3 complexes of repressor, indicating that protein binding in solution determines the precise DNA conformation. The overall structure of the lambda domain is not greatly perturbed by binding to either OL1 or OR3, in accord with X-ray studies of other complexes. However, Raman markers indicate a change in hydrogen bonding of the OH group of tyrosine-22, which is a hydrogen-bond acceptor in the absence of DNA but a combined donor and acceptor in the OL1 complex; yet, Y22 hydrogen bonding is not altered in forming the OR3 complex. The present results demonstrate qualitatively different and distinguishable modes of interaction of the lambda repressor DNA-binding domain with operators OL1 and OR3 in solution. This application of laser Raman spectroscopy to a well-characterized system provides a prototype for future Raman studies of other DNA-binding motifs under physiological conditions.  相似文献   

3.
Lac repressor, lambda cro protein and their operator complexes are structurally, biochemically and genetically well analysed. Both proteins contain a helix-turn-helix (HTH) motif which they use to bind specifically to their operators. The DNA sequences 5'-GTGA-3' and 5'-TCAC-3' recognized in palindromic lac operator are the same as in lambda operator but their order is inverted form head to head to tail to tail. Different modes of aggregation of the monomers of the two proteins determine the different arrangements of the HTH motifs. Here we show that the HTH motif of lambda cro protein can replace the HTH motif of Lac repressor without changing its specificity. Such hybrid Lac repressor is unstable. It binds in vitro more weakly than Lac repressor but with the same specificity to ideal lac operator. It does not bind to consensus lambda operator.  相似文献   

4.
DNA binding properties of the LexA repressor   总被引:21,自引:0,他引:21  
  相似文献   

5.
Contacts between tet operator DNA and Tet repressor protein are characterized by modification interference studies. The modified DNA fragments are separated into fractions with high, intermediate and low affinities for Tet repressor by polyacrylamide gel electrophoresis. Ethylation of the phosphates with N-ethylnitrosourea reveals 12 contacts of a repressor dimer to tet operator. Eight of these contacts appear to be important for Tet repressor binding, as judged by the strong interference at these positions, while four contacts are probably less important. All of the phosphate contacts are located on the same side of the B-DNA structure. The sequences of tet operators proposed to interact with the recognition alpha-helix of Tet repressor are TCTATC in three cases and CCTATC in one case. After methylation of N-7 with dimethylsulfate, strong interference is observed at the guanine residues at positions +/- 2. None of the N-7 functions of other guanine residues seems to be involved in tight contacts to Tet repressor. Tet repressor subunits form identical phosphate and guanine N-7 contacts with each half side of the two tet operators indicating twofold dyad symmetry of the complexes. Attempts to analyze the methylation interference at the adenine N-3 sites reveal different results for the operators. Modification of DNA fragments with diethylpyrocarbonate yields hypersensitive sites in the tet operators, indicating different local DNA structures. Carbethoxylation interference studies confirm the contacts at the purines found by methylation interference. All of the sequence-specific protein-DNA contacts detected in this study are centered at the inside four base-pairs in each tet operator half side. The contacts are discussed with respect to the structure of the repressor-operator complex.  相似文献   

6.
7.
8.
9.
The interaction of Trp repressor protein with partial trp operators was studied in vitro and in vivo. At high ratios of protein to DNA, Trp holorepressor formed stable complexes with DNA molecules containing half operators. When plasmids conferring the capacity to hyperproduce Trp repressor were present in trpOc strains of Escherichia coli, repression of downstream tryptophan synthase occurred. Palindromicity of the trp operator may facilitate stable interaction with Trp repressor, but this attribute need not be regarded as a critically essential structural feature. Sufficient information for the recognition by Trp repressor protein of an appropriate target resides within a DNA sequence of approximately ten base-pairs.  相似文献   

10.
The tet operators of two naturally evolved tetracycline resistance determinants differ by a G.C to A.T transition at the sixth base pair. This mutation prevents heterologous recognition of these tet operators by their respective two Tet repressor proteins. The amino acid side chains responsible for this sequence-specific distinction of operators were determined. For this purpose in vitro recombinants of the two tetR genes were constructed. Restriction sites were introduced by oligonucleotide-directed mutagenesis in both genes followed by the exchange of different coding segments between them. The encoded chimeric Tet repressor proteins were expressed and their operator recognition specificity was scored in vivo. Exchanging gradually smaller coding segments led finally to a single amino acid exchange in both genes at position 40 of the primary structures. Each Tet repressor containing Thr at this position recognizes the G.C operator while those with Ala recognize the A.T operator regardless of the rest of the sequences. This result demonstrates clearly that the amino acid 40 of Tet repressor contacts and recognizes base pair 6 of tet operator. Sterical interference of the large Thr side chain with the methyl group of A.T and a possible involvement of the hydroxyl in hydrogen bonding to the operator are discussed as the molecular basis of this differentiation between A.T and G.C base pairs.  相似文献   

11.
The synthesis of the inducible enzyme penicillinase of Bacillus licheniformis is negatively controlled by a repressor (D.A. Dubnau and M.R. Pollock, J. Gen. Microbiol. 41:7-21, 1965; D. J. Sherratt and J. F. Collins, J. Gen. Microbiol. 76:217-230,1973). The molecular organization of the genes coding for penicillinase (penP) and its repressor (penI) has recently been determined (T. Himeno, T. Imanaka, and S. Aiba, J. Bacteriol. 168:1128-1132, 1986). These two genes are transcribed divergently from within a 364-nucleotide region separating the coding sequences. We cloned and sequenced the repressor gene (penIc) from strain 749/C that constitutively produces penicillinase. The penIc and penI+ (wild-type) genes were expressed in Escherichia coli. Complementation analysis indicated that the repressor is the only trans-acting protein required to regulate the expression of the penI and penP genes. We purified the wild-type repressor protein, used it in gel retardation and DNase I protection experiments, and identified three operators positioned in the region between the penP and penI coding sequences. The spatial arrangement of the operators and the hierarchy in repressor binding seen in the protection experiments indicate that (i) the penI gene product represses the expression of the penP gene by physically blocking the RNA polymerase-binding site and (ii) the penI gene is autoregulated.  相似文献   

12.
Bacteriophage P1 encodes several regulatory elements for the lytic or lysogenic response, which are located in the immC, immI, and immT regions. Their products are the C1 repressor of lytic functions with the C1 inactivator protein Coi, the C4 repressor of antirepressor synthesis and the modulator protein Bof, respectively. We have studied in vitro the interaction of the components of the immC and immT regions with C1-controlled operators using highly purified Bof, C1, and Coi proteins. Bof protein (M(r) = 9,800) does not interact with C1 repressor alone, but as shown by DNA mobility shift experiments, in the presence of C1 repressor Bof binds to all operators tested by forming a C1.Bof-operator DNA ternary complex. The effect of this complex formation was studied in more detail with the operator of the c1 gene. Here, Bof only marginally alters the C1 repressor footprint at Op99a,b, but nevertheless considerably influences the repressibility of the operator.promoter element: (i) the autoregulated c1 mRNA synthesis is further down-regulated and (ii) the ability of Coi protein to dissociate the C1.operator DNA complex is strongly inhibited. We suggest that Bof protein functions by modulating C1 repression of many widely dispersed operators on the prophage genome.  相似文献   

13.
14.
15.
We have analyzed protein-DNA complexes formed between lac repressor and linear or differently supercoiled lac DNA (802 or 816 base-pairs in length), which carry all three natural lac operators (O1, O2 and O3) in their wild-type sequence context and spacing and compared them with constructs that contain specifically mutated "pseudo-operators" O2 or O3. We used gel retardation assays to identify the nature of the complexes according to their characteristic electrophoretic mobility and dissociation rate measurements to determine their stability. With linear DNA we found only indirect evidence for loop formation between O1 and O2. In covalently closed DNA minicircles the formation of a loop between O1 and O2 could be demonstrated by the observation that O1-O2 containing DNA with low negative supercoiling (sigma = -0.013 and less) is constricted by binding of lac repressor, resulting in an increased electrophoretic mobility. At elevated negative supercoiling (sigma = -0.025, -0.037, -0.05) O1-O2 containing DNA complexed with lac repressor migrates significantly slower than the corresponding O1-DNA, indicating loop formation. The dissociation of lac repressor-operator complexes is decreased with increasing negative supercoiling for all tested operator combinations of O1, O2 and O3. However, in the presence of at least two natural lac operators on the same DNA minicircle the enhancement of stability is particularly large. This indicates that a DNA loop is formed between these two lac operators, O1 and O2 as well as O1 and O3, since negative supercoiling is known specifically to promote the formation of looped structures. Additionally, we observe a dependence of dissociation rate on the spatial alignment of the operators as a result of changing helical periodicity in differently supercoiled DNA and consider this to be further evidence for loop formation between O1 and O2 as well as O1 and O3.  相似文献   

16.
17.
18.
We have constructed a system which allows systematic testing of repressor--operator interactions. The system consists of two plasmids. One of them carries a lac operon in which lac operator has been replaced by a unique restriction site into which synthetic operators can be cloned. The other plasmid carries the gene coding for the repressor, in our case a semisynthetic lacI gene of which parts can be exchanged in a cassette-like manner. A galE host allows us to select for mutants which express repressors with altered specificities. Here we report the change of specificity in the lac system by changing residues 1 and 2 of the recognition helix of lac repressor. The specificity changes are brought about cooperatively by the change of both residues. Exchanges of just one residue broaden the specificity. Our results hint that the recognition helix of lac repressor may possibly have the opposite orientation to those in Lambda cro protein or 434 CI repressor.  相似文献   

19.
20.
How lambda repressor and lambda Cro distinguish between OR1 and OR3   总被引:14,自引:0,他引:14  
A Hochschild  J Douhan  M Ptashne 《Cell》1986,47(5):807-816
Although lambda repressor and lambda Cro bind to the same six operators on the phage chromosome, the fine specificities of the two proteins differ: repressor binds more tightly to OR1 than to OR3, and vice versa for Cro. In this paper, we change base pairs in the operators and amino acids in the proteins to analyze the basis for these preferences. We find that these preferences are determined by residues 5 and 6 of the recognition helices of the two proteins and by the amino-terminal arm, in the case of repressor. We also find that the most important base pairs in the operator which enable repressor and Cro to discriminate between OR1 and OR3 are position 3 (for Cro) and positions 5 and 8 (for repressor). These and previous results show how repressor and Cro recognize and distinguish between two related operator sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号