首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study concerns the effect of the lysosomotropic drug chloroquine on the uptake and metabolism of [35S]cystine in vitro by normal human fibroblasts and those from patients suffering from the lysosomal storage disease cystinosis. When the cells were cultured with [35S]cystine for periods in excess of 4 h, it was found that chloroquine considerably increased (up to 30-fold) the labelling of the intracellular cystine pool in cystinotic cells, with no increase or a much smaller increase in normal cells. For this effect chloroquine had an optimum concentration of 20 microM, with a small effect still being noticeable at 1 microM. A quinoline analogue, 4-(dimethylaminoethylamino)-7-iodoquinoline, had a similar effect to chloroquine. However, NH4Cl at concentrations of between 100 microM and 50 mM showed either no effect (at the lower concentrations) or a depression of intracellular cystine labelling (at the higher concentrations). The differences between the effects of the quinolines on cystinotic acid normal cells were not due to differences in total cell uptake of drug.  相似文献   

2.
The regulation of lysosomal cystine transport was studied using cystine dimethyl ester-loaded lysosomes isolated from human diploid fibroblasts. Net efflux from normal fibroblast lysosomes was compared to that from lysosomes of cystinotic fibroblasts, which contain an inherited mutation decreasing lysosomal cystine transport. This exodus of cystine from normal fibroblast lysosomes was greater than from cystinotic fibroblast lysosomes. When lysosomes were incubated with both 5 mM MgCl2 and 2 mM ATP (Mg/ATP), the amount of lysosomal cystine lost from normal lysosomes doubled, but the amount of cystine lost from cystinotic lysosomes remained small. This effect of Mg/ATP on cystine loss from lysosomes isolated from normal fibroblasts was abolished when either carbonyl cyanide m-chlorophenylhydrazone or N-ethylmaleimide was present, suggesting that the effect of Mg/ATP was mediated by the action of a lysosomal proton-translocating ATPase. Addition of KCl, RbCl, or NaCl to normal lysosomes caused smaller increases in cystine exodus. A variety of experimental conditions altered lysosomal pH, membrane potential, and the cystine lost from normal fibroblast lysosomes. These same experimental conditions produced similar alterations in the lysosomal pH and membrane potential of cystinotic fibroblast lysosomes without a comparable alteration in cystine loss. These results have led us to propose a model in which the transport of cystine out of the normal lysosome is regulated by both the lysosomal membrane potential gradient and the transmembrane pH gradient.  相似文献   

3.
Polyamines stimulate lysosomal cystine transport   总被引:1,自引:0,他引:1  
Lysosomal cystine transport is a carrier-dependent process that, in isolated lysosomes, is stimulated by proton gradients, membrane potential, and millimolar concentrations of divalent cations. The importance of these regulatory factors in vivo is not well established. Polyamines were found to stimulate cystine transport in Percoll gradient purified rat liver lysosomes with spermidine greater than putrescine = cadaverine greater than spermine in order of effectiveness. Maximal stimulation was achieved with 500 microM spermidine. The effects of optimal concentrations of polyamines and divalent cations on cystine transport were not additive. Spermidine stimulated cystine efflux from lysosomes of cultured human diploid fibroblasts, but had no effect on lysosomes of cystinotic fibroblasts which have defective cystine transport. Spermidine did not accumulate within lysosomes in exchange for cystine, had no effect on lysosomal pH, had only slight effects on the lysosomal membrane potential, and had little effect on either methionine or tyrosine efflux. Polyamines are cellular cytoplasmic components that, in physiologic concentrations, stimulate lysosomal cystine transport.  相似文献   

4.
Normal leucocyte lysosome-rich granular fractions exhibited counter-transport of cystine, confirming that cystine transport across the lysosomal membrane is carrier-mediated. The trans-activation of cystine transport was temperature-dependent but relatively independent of the external Na+ or K+ concentration in phosphate buffer. Counter-transport, measured as uptake of exogenous [3H]cystine, increased with increasing intralysosomal cystine content up to approx. 3 nmol of half-cystine/unit of hexosaminidase activity. The amount of [3H]cystine entering lysosomes loaded with unlabelled cystine decreased when unlabelled cystine was added to the extralysosomal medium. Lysosomal cystine counter-transport was stereospecific for the L-isomer. Cystathionine, cystamine and cysteamine-cysteine mixed disulphide gave evidence of sharing the lysosomal cystine-transport system, although at lower activity than cystine. Other tested amino acids, including arginine, glutamate and homocystine, were inactive in this system. Nine leucocyte lysosome-rich preparations from eight different cystinotic patients displayed virtually no counter-transport of cystine, conclusively establishing that a carrier-mediated system for cystine transport is dysfunctional in cystinotic lysosomes.  相似文献   

5.
The discovery of a trans-stimulation property associated with lysine exodus from lysosomes of human fibroblasts has enabled us to characterize a system mediating the transport of cationic amino acids across the lysosomal membrane of human fibroblasts. The cationic amino acids arginine, lysine, ornithine, diaminobutyrate, histidine, 2-aminoethylcysteine, and the mixed disulfide of cysteine and cysteamine all caused trans-stimulation of the exodus of radiolabeled lysine from the lysosomal fraction of human fibroblasts at pH 6.5. In contrast, neutral and acidic amino acids did not affect the rate of lysine exodus. trans-Stimulation of lysine exodus was observed over the pH range from 5.5 to 7.6, was specific for the L-isomer of the cationic amino acid, and was intolerant to methylation of the alpha-amino group of the amino acid. The lysosomotropic amine, chloroquine, greatly retarded lysine exodus, whereas the presence of sodium ion was without effect. The specificity and lack of Na+ dependence of this lysosomal transport system is similar to that of System y+ present on the plasma membrane of human fibroblasts. In addition, we find cystine exodus from the lysosomal fraction of cystinotic human fibroblasts to be greatly retarded as compared to that of normal human fibroblasts with half-times of exodus similar to those reported for the lysosomes of cystinotic and normal human leukocytes (Gahl, W. A., Tietze, F., Bashan, N., Steinherz, R., and Schulman, J. D. (1982) J. Biol. Chem. 257, 9570-9575). In contrast, normal and cystinotic human fibroblasts did not show any differences with regard to lysine efflux or its trans-stimulation by cationic amino acids. An important mechanism by which cysteamine treatment of cystinosis allows cystine escape from lysosomes may be the ability of the mixed disulfide of cysteine and cysteamine formed by sulfhydryl-disulfide exchange to migrate by this newly discovered system mediating cationic amino acid transport.  相似文献   

6.
It is well established that when cystine-depleted cystinotic cells are cultured in cystine-containing medium, they reaccumulate cystine within their lysosomes more rapidly than when cultured in cystine-free medium. This has been a puzzling result, since the lysosome membrane of cystinotic cells is impermeable to cystine. To probe the mechanism of cystine reaccumulation, we have measured reaccumulation in the presence of colchicine, an inhibitor of pinocytosis, or of glutamate, a competitive inhibitor of cystine transport into human fibroblasts. Colchicine had no effect, thus eliminating pinocytosis as a putative mechanism for cystine translocation from the culture medium to the lysosomes. Glutamate, however, strongly inhibited cystine reaccumulation. It is concluded that the true mechanism is as follows. 1. Exogenous cystine crosses the plasma membrane on the cystine-glutamate porter. 2. Cystine is reduced in the cytoplasm by GSH. 3. The cysteine that is generated enters the lysosome, where it becomes cystine by participating in the reduction of cystine residues during intralysosomal proteolysis, or by autoxidation.  相似文献   

7.
Cystinotic fibroblasts transferred from 37 degrees C to 28 degrees C accumulated additional cystine over the period from 4 to 7 days of incubation at 28 degrees C, after which the additional cystine was lost; warming (to 37 degrees C) of cells with elevated cystine stores led to rapid cystine loss. These results, taken together with previously published data showing cystine release from cystinotic fibroblasts incubated at above-normal temperature, are interpreted as indicating the presence in the cystinotic fibroblast lysosome membrane of a cystine-porter whose efficacy is increased by an increase in membrane fluidity. This porter may be the residual activity of the cystine porter that is known to be deficient in cystinosis, or it may be a second as yet unrecognized porter. It is further proposed that this porter is responsible for the presumed efflux of cystine from cystinotic lysosomes.  相似文献   

8.
Lysosomes of cystinotic human fibroblasts contain over 100-times the normal concentration of cystine. The high cystine concentration (probably in the millimolar range) might be expected to inhibit intralysosomal protein breakdown. A comparison of pinocytosis and degradation of five 125I-labelled proteins (bovine serum albumin, formaldehyde-denatured bovine serum albumin, bovine pancreatic ribonuclease A and porcine lactate dehydrogenase isoenzymes H4 and M4) by human fibroblasts has been made, using one cystinotic and two normal cell-lines. The proteins each entered fibroblasts by adsorptive pinocytosis and were then degraded within the lysosomes by enzymes susceptible to leupeptin, the thiol-proteinase inhibitor. Each protein was captured by the fibroblasts at a characteristic rate, which was not different in cystinotic cells. Normal and cystinotic fibroblasts did not differ in their proteolytic capacity, as measured in extracts of disrupted cells. In intact fibroblasts, four of the five proteins were rapidly and fully digested following pinocytosis, in both cystinotic and normal cells. However, with formaldehyde-denatured albumin, the most resistant to degradation of the proteins tested, or with some other proteins in the presence of leupeptin, when the proteolytic capacity of lysosomes is diminished, intralysosomal degradation of pinocytosed protein was incomplete. Moreover, under these conditions, cystinotic cells demonstrated a lower rate of protein digestion than normal cells. It is concluded that pinocytic capture, rather than intralysosomal proteolysis, is commonly the rate-limiting step in the overall process of uptake and degradation of proteins by fibroblasts, and that intralysosomal cystine inhibits digestion of pinocytosed protein only in circumstances when degradation becomes the rate-limiting step.  相似文献   

9.
Cultured fibroblasts from patients with I-cell disease (mucolipidosis II) accumulate excessive amounts of free cystine, similarly to cells from patients with nephropathic cystinosis, a disorder of lysosomal cystine transport. To clarify whether the intralysosomal accumulation of cystine in I-cell-disease fibroblasts was due to a defective disposal mechanism, we measured the rates of clearance of free [35S]cystine from intact normal, cystinotic and I-cell-disease fibroblasts. Loss of radioactivity from the two mutant cell types occurred slowly (t 1/2 = 500 min) compared with the rapid loss from normal cells (t 1/2 = 40 min). Lysosome-rich granular fractions isolated from three different cystine-loaded normal, cystinotic and I-cell-disease fibroblast strains were similarly examined for non-radioactive cystine egress. Normal granular fractions lost cystine rapidly (mean t 1/2 = 43 min), whereas cystinotic granular fractions did not lose any cystine (mean t 1/2 = infinity). I-cell-disease granular fractions displayed prolonged half-times for cystine disposal (mean = 108 min), suggesting that I-cell-disease fibroblasts, like cystinotic cells, possess a defective carrier mechanism for cystine transport.  相似文献   

10.
Kidney samples from children with the inborn metabolic disease cystinosis contain 4 times more selenium (Se) than do kidney samples from normal individuals (p = 0.1). However, when cultured skin fibroblasts from cystinotic patients and normal control individuals are incubated in Se-D,L-methionine, Se-D,L-cystine, Se-cystamine X HCl, Se-urea, selenite or in medium without added selenium, only the cystinotic fibroblasts grown in Se-urea or selenite (SeO3=) contain more selenium than do the corresponding normal cells (p less than 0.05). In both types of cultured fibroblasts, the order of descending toxicity per ppm selenium is: Se-urea greater than Se-cystamine greater than Se-cystine greater than or equal to SeO3= much greater than Se-methionine. High (apparently toxic) concentrations of Se-urea and Se-cystamine lower the elevated intracellular free (nonprotein) cystine content of cystinotic fibroblasts to less than 60% of control values; at lower concentrations, these compounds raise the cystine content of these cells to over 140% of control values. Appropriate concentrations of SeO3=, Se-cystine and Se-methionine also elevate the free cystine content of the cystinotic cells. During a 75 minute incubation in 35S-cystine, the incorporation of 35S into the acid precipitable (protein) fraction of both cell types is significantly inhibited by Se-cystamine (approximately 55% control; p less than 0.05). The incorporation of 35S-cystine into glutathione is inhibited by Se-cystine (approximately 40% control) in both fibroblast types (p less than 0.05). In cystinotic cells, Se-cystamine significantly reduces incorporation of 35S-cystine into the cystine pool (40% control) as does SeO3= (67% control; p less than 0.05). Protein and glutathione synthesis in cystinotic fibroblasts are more strongly inhibited by Se-cystine and SeO3=, respectively, than in normal fibroblasts (p less than 0.05). These studies demonstrate that selenium compounds exhibit a different sequence of toxicity in fibroblasts than in the intact animal and that some previously unreported metabolic effects (i.e. inhibition of glutathione synthesis) may contribute to their toxicity.  相似文献   

11.
Human skin fibroblast cells derived from a juvenile patient with nephropathic cystinosis were transformed by simian virus 40. Transformed cell clones were isolated and established in tissue culture. In comparison to the parental cystinotic cells, the newly isolated, transformed cell clones had a higher plating efficiency, a modal chromosome number of 68, grew in soft agar, and showed a nuclear immunofluorescence typical for SV 40-specific tumor (T) antigen. The content of intracellular, unbound cystine in the transformed cell clone was of the same level (6.1 nmol 1/2 cystine/mg protein) as in the parental cystinotic cells (7.4 nmol). Control cells (SV 80 and WI-38) contained normal levels of cystine (0.31 and 0.47 nmol 1/2 cystine/mg protein). The growth characteristics make the transformed cystinotic cell clone suitable for large scale preparation of cellular constituents, i.e. lysosomes which seem to be affected in cystinotic patients.  相似文献   

12.
R Steinherz  N Makov  R Narinsky  B Meidan  G Kohn 《Enzyme》1984,32(2):126-130
I-cell fibroblasts can accumulate cystine at levels comparable to those seen in homozygous cystinotic fibroblasts. Cystine accumulation in cystinosis is accounted for cystine clearance defect in situ. To unravel the question whether the same clearance defect or two different mechanisms cause cystine accumulation in I-cell disease, we used the cystine loading technique upon exposure of skin fibroblasts to radioactive cystine dimethyl ester. Normal, cystinotic and I-cell fibroblasts were exposed to radioactive cystine dimethyl ester, and the clearance of the generated radioactive cystine was measured. Cystinotic cells showed a marked defect in cystine clearance in situ, as compared to normal fibroblasts. In I-cell fibroblasts, we observed slow hydrolysis of cystine dimethyl ester to cystine, indicating low esterase activity, but no defect in clearance of the generated cystine. Cysteine production from the exogenous cystine dimethyl ester, presumably by cytoplasmic hydrolysis of the generated cystine, is normal in I-cell fibroblasts. Thus, our results indicate that, unlike cystinosis, there is no cystine clearance defect in situ for cystine in I-cell disease, and probably unrelated mechanisms cause cystine storage in cystinosis and I-cell disease.  相似文献   

13.
Cystine content of skin fibroblasts derived from patients with cystinosis was decreased by inhibitors of gamma-glutamyl transpeptidase, the initial enzyme in glutathione catabolism. The addition of maleate or the gamma-glutamyl hydrazone of alpha-ketobutyric acid to culture medium (1-20 mM) resulted in dose-dependent decreases of up to 55% on intracellular cystine content of cystinotic cells in 24 h. L-Serine in sodium borate buffer (40 mM each) produced similar results and further decreased cystine levels to 14% of cystinotic control values after 10 days incubation. Analysis of intracellular amino acids showed that, in general, other amino acids remained unchanged following serine-borate treatment. These results suggest that cystine storage in cystinotic tissues may be related to metabolism of glutathione.  相似文献   

14.
Summary Extracellular cysteine concentrations between 0.5 and 2.5 mM resulted in death of normal but not cystinotic cells grown in Eagle's minimal essential medium containing supplemental fetal bovine serum and antibiotics. Differential cell survival was determined by viable cell counting using Trypan Blue dye exclusion. In cocultivation experiments of [3H]thymidine-labelled cystinotic fibroblasts with nonradioactive normal fibroblasts, autoradiography confirmed the selective survival of cystinotic cells in medium containing 1 mM cysteine. At this concentration of 1 mM cysteine, intracellular cystine content increased slightly in surviving normal cells but not in cystinotic cells, which normally contain a high level of intracellular cystine. This comparative resistance of cystinotic fibroblasts to elevated extracellular cysteine concentrations forms the basis for an in vitro selective system for these mutant human cells. Further exploration of this resistance phenomenon may well expand the understanding of the molecular defect in cystinotic cells.  相似文献   

15.
Adsorptive pinocytosis of acid hydrolases by fibroblasts depends on phosphomannosyl recognition markers on the enzymes and high-affinity pinocytosis receptors on the cell surface. In this study, beta- glucuronidase binding to the cell surface of attached fibroblasts was found to be saturable and inhibitable by mannose-6-phosphate (Man-6-P). Dissociation of cell-bound beta-glucuronidase occurred very slowly at neutral pH, but was greatly accelerated by lowering the pH below 6.0, or by exposure to Man-6-P. Comparison of the maximal cell surface binding and the observed rate of enzyme pinocytosis suggests that the pinocytosis receptors are replaced or reused about every 5 min. Enzyme pinocytosis was not affected by inhibition of new protein synthesis for several hours, suggesting a large pool of internal receptors and/or reuse of internalized receptors. Chloroquine treatment of normal human fibroblasts had three effects: (a) greatly enhanced secretion of newly synthesized acid hydrolases bearing the recognition marker for uptake, (b) depletion of enzyme-binding sites from the cell surface, and (c) inhibition of pinocytosis of exogenous enzyme. Only the third effect was seen in I-cell disease fibroblasts, which were also less sensitive than control cells to this effect. These observations are consistent with a model for transport of acid hydrolases that proposes that delivery of newly synthesized acid hydrolases to lysosomes requires the phosphomannosyl recognition marker on the enzymes, and intracellular receptors that segregate receptor-bound enzymes into vesicles for transport to lysosomes. This model explains how chloroquine, which raises intralysosomal pH, can disrupt both the intracellular pathway for newly synthesized acid hydrolases, and the one for uptake of exogenous enzyme by cell surface pinocytosis receptors.  相似文献   

16.
The characteristics of the uptake of L-cystine by the continuous opossum kidney cell line, OK, were examined. Uptake of cystine is rapid and, in contrast to other continuous cultured cell lines, these cells retain the cystine/dibasic amino acid transport system which is found in vivo and in freshly isolated kidney tissue. Confluent monolayers of cells also fail to show the presence of the cystine/glutamate transport system present in LLC-PK1 cells, fibroblasts, and cultured hepatocytes. Uptake of cystine occurs via a high-affinity saturable process which is independent of medium sodium concentration. The predominant site of cystine transport is across the apical cell membrane. The intracellular concentration of GSH far exceeds that of cystine with a ratio greater than 100:1 for GSH:cysteine. Incubation of cells for 5 minutes with a physiological level of labelled cystine resulted in the labelling of 66% and 5% of the total intracellular cysteine and glutathione, respectively. The ability of these cells to reflect the shared cystine/dibasic amino acid transport system makes them a suitable model for investigation of the cystine carrier which is altered in human cystinuria.  相似文献   

17.
Puromycyl peptides were degraded in MRC5 fibroblasts more rapidly than normal proteins labelled for the corresponding length of time for both long and short labelling periods. The degradation of the puromycyl peptides occurred almost exclusively in the cytosol of the cells. Even when the half-lives of normal and puromycyl peptides were manipulated to be similar, proportionally more of the normal proteins were degraded in the lysosomes. The rapid degradation of the puromycyl peptides was not due to the inhibition of protein synthesis brought about by puromycin but was due to the structure of the substrates themselves. The degree and intracellular site of degradation of puromycyl peptides closely mimic those of abnormal (missense) proteins containing amino acid analogues.  相似文献   

18.
Cystinosis is an inherited lysosomal storage disease characterized by defective transport of cystine out of lysosomes. However, the causative gene, CTNS, encodes a seven transmembrane domain lysosomal protein, cystinosin, unrelated to known transporters. To investigate the molecular function of cystinosin, the protein was redirected from lysosomes to the plasma membrane by deletion of its C-terminal GYDQL sorting motif (cystinosin-DeltaGYDQL), thereby exposing the intralysosomal side of cystinosin to the extracellular medium. COS cells expressing cystinosin-DeltaGYDQL selectively take up L-cystine from the extracellular medium at acidic pH. Disruption of the transmembrane pH gradient or incubation of the cells at neutral pH strongly inhibits the uptake. Cystinosin-DeltaGYDQL is directly involved in the observed cystine transport, since this activity is highly reduced when the GYDQL motif is restored and is abolished upon introduction of a point mutation inducing early-onset cystinosis. We conclude that cystinosin represents a novel H(+)-driven transporter that is responsible for cystine export from lysosomes, and propose that cystinosin homologues, such as mammalian SL15/Lec35 and Saccharomyces cerevisiae ERS1, may perform similar transport processes at other cellular membranes.  相似文献   

19.
Compounds such as N-dodecylimidazole and N-dodecylmorpholine kill cells in culture. Their cytotoxicity has been attributed to accumulation in lysosomes where protonation confers detergent properties resulting in membrane destabilization. This hypothesis has been tested by examining the ability of N-dodecylimidazole and N-dodecylmorpholine to decrease the latency of alpha-glucosidase in isolated rat liver lysosomes. No effect was observed. Nor was N-dodecylimidazole apparently able to increase the permeability of isolated rat liver lysosomes to L-alanine, as no diminution of the disruptive effect of L-alanine methyl ester was seen. N-Dodecylimidazole (10-20 micrograms per ml) caused lactate dehydrogenase release from cystinotic fibroblasts, but marginally toxic concentrations failed to induce cystine release, as might have been expected if lysosome membrane damage had occurred. It is concluded that the cytotoxic effects of lysosomotropic detergents may be mediated by a non-lysosomal mechanism.  相似文献   

20.
Exchange of cystine and glutamate across plasma membrane of human fibroblasts   总被引:16,自引:0,他引:16  
It is found that both the inward and outward transport of cystine and glutamate through the plasma membrane of cultured human fibroblasts is mediated mostly by a single transport system. Cystine and glutamate at one side of the membrane stimulate the passage of these amino acids present at the other side of the membrane. When the concentration of intracellular glutamate is reduced to near zero, cystine hardly enters the cell, and likewise the release of glutamate from the cell ceases when cystine is absent in the medium. Homocysteate and alpha-aminoadipate share this transport system and, when added, similarly participate in the transport process. Since the intracellular pool of cystine is negligibly small whereas that of glutamate is very large, the physiologic flows via this system are the entry of cystine and the exodus of glutamate coupled together. Measurements of the rate of uptake of cystine into the cells and the rate of release of glutamate from the cells indicate that the entry of cystine and the exodus of glutamate occur at a ratio close to 1:1. Since cystine is known to behave as an anionic form in this transport, it is concluded that the transport system for cystine and glutamate in plasma membrane of human fibroblasts is a kind of an anion-exchanging agency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号