首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PRL response to TRH constitutes an important clinical tool for diagnosing forms of hyperprolactinemic syndrome. Hence it is important to establish the characteristics of the circadian variation in the response of PRL to TRH to improve the diagnostic value of the test. Six male subjects, ranging in age from 23 to 24 years, participated in this study. All were considered healthy on the basis of clinical examination, biochemical and hormonal tests. Six TRH tests were performed on each subject, one test every other day during a total span of 12 days. Each test was performed at a different clock hour: 0000, 0400, 0800, 1200, 1600, 2000. For the test, subjects received 200 microgram TRH intravenously. Blood samples were drawn from a catheterized arm vein before the TRH injection (basal value) and 20, 30, 60 and 120 min after injection. At each timepoint 5 endpoints were determined for PRL on each subject. The population mean cosinor, according to Halberg, was used to investigate the circadian rhythm in each of the endpoints. All the 5 endpoints for PRL are consistent on showing p values near 0.5 and acrophase estimates before midnight (while basal value displays acrophase at 0400). Further investigations are necessary to clarify these circadian rhythms and the shift of the acrophases.  相似文献   

2.
Prolactin (PRL) release was studied in mid-lactational female rats by comparing the stimulatory influence of suckling to a drug protocol that mimics the effect of suckling on the anterior pituitary (AP). Animals that nursed pups for 15 minutes and were allowed to suckle again 60 minutes later for 10 minutes, released PRL effectively during both nursing episodes; however, in animals that received the dopamine (DA) agonist 2-Br-alpha-ergocryptine maleate (CB-154, 0.5 mg/rat i.v.) at the end of the first nursing period did not show an increase in plasma PRL to a second suckling stimulation by the pups. When thyrotropin releasing hormone (TRH) was substituted for the second suckling period in CB-154 treated rats, a slight increase in plasma PRL occurred 5 minutes after the injection. In a third study we transiently blocked the action of DA at the AP by injecting the DA antagonist domperidone (0.01 mg/rat i.v.), followed 5 minutes later by the administration of CB-154. One hour later animals were either allowed to suckle pups for 10 minutes or were injected with TRH. Treatment with TRH resulted in an 11 fold increase in plasma PRL but suckling was completely ineffective in inducing PRL release. These data suggest that the lack of PRL release to suckling in CB-154 treated rats was due to inhibitory effects of CB-154 on neural mechanisms which link nursing to PRL release. In addition, the data show that pharmacologic DA antagonism affects TRH releasable PRL more than does suckling. This may be due to a reduction, by suckling, of the pool of PRL that is available to be released by TRH administration.  相似文献   

3.
The effects of administration of synthetic thyrotropin-releasing hormone (TRH) on circulating growth hormone (GH), PROLACTIN (PRL) and triiodothyronine (T3) levels of lactating dairy cows, non-lactating dairy heifers, and beef cows were studied. Intravenous administration of 0.1, 1, and 5 microgram of TRH per kg of body weight (bw) elevated plasma GH and PRL levels of lactating cows within 5 min. The plasma GH and PRL levels increased in proportion to the dose of TRH and reached a peak 10 to 30 min after TRH injection. Intravenous administration of 1 microgram of TRH per kg of bw to 7 non-lactating heifers, 14 lactating dairy cows, and 5 non-lactating beef cows elevated plasma GH level to peak values after 15 min, the increase rates being 6.9, 5.6, and 3.8 times as high as those in the pretreatment levels. The mean maximum vale was also in that order. Plasma T3 levels of non lactating dairy heifers at pre- and post-injection of TRH were significantly higher than those of lactating cows. The peak values of plasma PRL were obtained between 5 to 30 min after TRH administration. The increase rates of lactating dairy cows, heifers, and beef cows were 19.2, 13.9, and 20.9 times as high as those in the pretreatment. In contrast to GH and T3, plasma PRL levels of both pre- and post-injection with TRH in lactating cows and heifers were significantly higher in May than in October, though the increase rates were similar. Plasma PRL levels of lactating dairy cows at pre- and post-injection with TRH were significantly higher than those of non-lactating heifers. Subcutaneous administration of TRH was also effective to increase plasma TH, rl, and T3 levels in lactating cows. No significant change of GH or PRL response to TRH was observed after a short-term pretreatment of thyroid hormones.  相似文献   

4.
In previous studies it has been observed that acute administration or short-term treatment with calcium channel blockers can influence the secretion of some pituitary hormones. In this study, we have examined the effect of the long-term administration of diltiazem on luteinizing-hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH) and prolactin (PRL) levels under basal conditions and after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing-hormone (TRH) stimulation in 12 subjects affected by cardiovascular diseases who were treated with diltiazem (60 mg 3 times/day per os) for more than 6 months and in 12 healthy volunteers of the same age. The basal levels of the studied hormones were similar in the two groups. In both the treated patients and the control subjects, a statistically significant increase (p < 0.01) in LH, FSH, TSH and PRL levels was observed after GnRH/TRH administration. Comparing the respective areas under the LH, FSH, TSH and PRL response curves between the two groups did not present any statistically significant difference. These findings indicate that long-term therapy with diltiazem does not alter pituitary hormone secretion.  相似文献   

5.
To clarify the effects of cyclosporine A (CsA) on the secretion of serum thyrotropin (TSH), prolactin (PRL), luteinizing hormone (LH) and follicular stimulating hormone (FSH), we performed TRH and LH-RH testing in 4 patients with the nephrotic syndrome before and after the administration of CsA, 6 mg/kg/day for 4 to 12 weeks. Prior to CsA all patients responded normally to TRH with respect to TSH and PRL secretion. Two patients showed normal response of LH and FSH to LH-RH stimulation while the response in 2 other patients, who were both menopausal, was exaggerated. By the third or fourth week of CsA administration the basal and peak TSH and PRL values declined significantly in all patients in response to TRH stimulation while those of LH and FSH showed only a modest decrease in response to LH-RH stimulation. Two to 4 weeks after the cessation of CsA the response of TSH, PRL and FSH returned to the pretreatment level. These observations suggest that: 1) CsA exerts an inhibitory effect on the secretion of at least TSH and PRL in humans, and 2) the effect of CsA on the pituitary may be partially reversible after the cessation of the therapy.  相似文献   

6.
The pituitary-thyroid axis of 12 patients, exposed to transsphenoidal pituitary microsurgery because of nonfunctioning adenomas (6), prolactinomas (3) and craniopharyngioma (1), or to major pituitary injury (1 apoplexy, 1 accidental injury), was controlled more than 6 months following the incidents. The patients did not receive thyroid replacement therapy and were evaluated by measurement of the serum concentration of thyroxine (T4), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (rT3), T3-resin uptake test and thyrotropin (TSH, IRMA method) before and after 200 micrograms thyrotropin releasing hormone (TRH) iv. The examination also included measurement of prolactin (PRL) and cortisol (C) in serum. Apart from 1 patient with pituitary apoplexy all had normal basal TSH levels and 9 showed a significant TSH response to TRH. Compared to 40 normal control subjects the 12 patients had significantly decreased levels of T4, T3 and rT3 (expressed in free indices), while the TSH levels showed no change. Five of the patients, studied before and following surgery, had all decreased and subnormal FT4I (free T4 index) after surgery, but unchanged FT3I and TSH. The levels of FT4I were positively correlated to both those of FT3I and FrT3I, but not to TSH. The TSH and thyroid hormone values showed no relationship to the levels of PRL or C of the patients exposed to surgery. It is concluded that the risk of hypothyroidism in patients exposed to pituitary microsurgery is not appearing from the TSH response to TRH, but from the thyroid hormone levels.  相似文献   

7.
We have assessed the gonadotropin, TSH and PRL responses to the non aromatizable androgens, mesterolone and fluoxymestrone, in 27 patients with primary testicular failure. All patients were given a bolus of LHRH (100 micrograms) and TRH (200 micrograms) at zero time. Nine subjects received a further bolus of TRH at 30 mins. The latter were then given mesterolone 150 mg daily for 6 weeks. The remaining subjects received fluoxymesterone 5 mg daily for 4 weeks and 10 mg daily for 2 weeks. On the last day of the androgen administration, the subjects were re-challenged with LHRH and TRH according to the identical protocol. When compared to controls, the patients had normal circulating levels of testosterone, estradiol, PRL and thyroid hormones. However, basal LH, FSH and TSH levels, as well as gonadotropin responses to LHRH and TSH and PRL responses to TRH, were increased. Mesterolone administration produced no changes in steroids, thyroid hormones, gonadotropins nor PRL. There was, however, a reduction in the integrated and incremental TSH secretion after TRH. Fluoxymesterone administration was accompanied by a reduction in thyroid binding globulin (with associated decreases in T3 and increases in T3 resin uptake). The free T4 index was unaltered, which implies that thyroid function was unchanged. In addition, during fluoxymesterone administration, there was a reduction in testosterone, gonadotropins and LH response to LHRH. Basal TSH did not vary, but there was a reduction in the peak and integrated TSH response to TRH. PRL levels were unaltered during fluoxymesterone treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We studied the relationship between plasma and cerebrospinal fluid (CSF) concentrations of prolactin (PRL) in repeated and simultaneous samples of blood and CSF from chair-restrained rhesus monkeys. Following administration of thyrotropin releasing hormone (TRH), each of 4 monkeys showed increased plasma and lumbar CSF PRL concentrations. Increases in CSF PRL concentrations were muted and delayed until 60 min after peak plasma concentrations were attained. In 3 other monkeys we compared PRL concentrations in simultaneous lateral ventricular and lumbar CSF samples. Although we found no difference in PRL concentrations under baseline conditions, a ventricular-lumbar PRL concentration gradient became apparent after TRH stimulation. These studies demonstrate that changes in plasma PRL concentrations are reflected in CSF concentrations. They suggest that a significant blood-CSF barrier exists for PRL and that PRL may enter the the CSF selectively via the ventricles.  相似文献   

9.
It is known that opioids stimulate prolactin (PRL) secretion by an action on hypothalamic neurons, but in vitro studies have suggested a direct action on the lactotrophs. The present study was performed on male rats known to have little or no PRL response to TRH. A beta-endorphin (beta EP) injection in the third ventricle stimulated PRL secretion and induced furthermore a PRL secretory reaction to TRH injected intravenously 20 min later. Pretreatment with naloxone 10 min before beta EP injection abolished not only the PRL response to beta EP but also the conjugated effect of beta EP and TRH. Pretreatment with naloxone methyl bromide (Br-naloxone), a quaternary naloxone derivative, which does not cross the blood-brain barrier, had no effect on the PRL response to beta EP but prevented the conjugated effect of beta EP and TRH on PRL secretion. Pretreatment of the animals with -methyl-parathyrosine resulting in a dopamine depletion or with haloperidol, a dopamine antagonist, could not induce lactotroph responsiveness to TRH. These results suggest that beta EP in male rat sensitizes the PRL cell to TRH by a direct effect and not through an inhibition of the dopaminergic tone.  相似文献   

10.
The role of the tonic inhibitory effect of dopamine on aldosterone secretion has been investigated in 10 patients with chronic renal failure (CRF) on hemodialysis, in 8 normotensive renal transplant recipients (Tx) with normal renal function and in 8 normotensive volunteers (NV). The following tests were performed: the response of plasma aldosterone (PA) to metoclopramide administration; the response of plasma prolactin (PRL) to TRH administration, and the changes induced by Lisuride (a dopaminergic agonist, on the values of PA and PRL). The basal values of PA and PRL were higher in CRF than in NV and Tx. The inverse was true for plasma renin activity (PRA) values. The response of PA and PRL to metoclopramide showed blunted increases in CRF when compared to NV, in the absence of changes of PRA, cortisol and potassium. After TRH administration, PRL increase in CRF was also inferior. Lisuride induced a decrease of both PA and PRL both in CRF and NV. In Tx, basal values of PA and PRL were similar to NV. Nevertheless, the response to metoclopramide and TRH were partially blunted when compared to that of NV. These results point to the existence of a deranged dopaminergic regulation of aldosterone secretion in end-stage renal failure patients. The alterations are partially corrected by a well-functioning kidney graft.  相似文献   

11.
The effects of acute TRH and cimetidine administration on the plasma prolactin (PRL) response have been studied in cirrhotic patients with impaired glucose tolerance (IGT). I v. TRH administration stimulates PRL release both in cirrhotics and controls; i.v. cimetidine did not induced a significant rise of PRL in liver cirrhosis. Present findings demonstrate that PRL is not responsible for the deterioration of glucose handling in alcoholic cirrhotic patients examined.  相似文献   

12.
To investigate the relationship of changes in cytosolic free calcium concentrations [( Ca2+]c) caused by TRH to changes in PRL secretion, we simultaneously monitored PRL release and [Ca2+]c, using the fluorescent Ca2+ indicator indo-1, in freshly isolated perifused cells from rat anterior pituitary glands. We found that a 30-sec pulse of 100 nM TRH triggered a transient spike of [Ca2+]c, but prolonged PRL release for up to 30 min; continuous administration of TRH caused a sustained elevation in [Ca2+]c, but the same pattern and amount of PRL release as that caused by the pulse of TRH. PRL secretion was refractory to further pulses of TRH given at 10-min intervals for 40 min, but did respond to a second pulse of TRH given 40 min after the first pulse with no intervening pulses. Pulses of TRH given every 10 min still triggered spikes of [Ca2+]c of the same magnitude as the first pulse, indicating that the cause of the refractory state must occur at a post-receptor step that is after the mobilization of [Ca2+]c. A 30-sec pulse of a high concentration of KCl caused a transient spike of [Ca2+]c and transient, not prolonged, release. Additional pulses of KCl cause progressively less PRL release, although the magnitude of the spikes in [Ca2+]c did not change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To determine whether GnRH modifies prolactin (PRL) secretion in response to thyrotrophin-releasing hormone (TRH) in normal women, a group of eleven normal women, 23 to 40 years of age, was studied in the mid-follicular phase of the menstrual cycle. The PRL response to TRH was evaluated in serum under control conditions and after GnRH infusion. GnRH administration augmented basal PRL release and amplified TRH-induced PRL release. These results suggest that GnRH may be involved in PRL release, partly by increasing the sensitivity of the lactotrophs to TRH.  相似文献   

14.
Thyrotropin-releasing hormone (TRH) stimulates the prolactin (PRL) release from normal lactotrophs or tumoral cell line GH3. This effect is not observed in many patients with PRL-secreting tumors. We examined in vitro the PRL response to TRH on cultured human PRL-secreting tumor cells (n = 10) maintained on an extracellular matrix in a minimum medium (DME + insulin, transferrin, selenium). Addition of 10(-8) M TRH to 4 X 10(4) cells produced either no stimulation of PRL release (n = 6) or a mild PRL rise of 32 +/- (SE) 11% (n = 4) when measured 1, 2 and 24 h after TRH addition. When tumor cells were preincubated for 24 h with 5 X 10(-11) M bromocriptine, a 47 +/- 4% inhibition of PRL release was obtained. When TRH (10(-8) M) was added, 24 h after bromocriptine, it produced a 85 +/- 25% increase of PRL release (n = 8). This stimulation of PRL release was evident when measured 1 h after TRH addition and persisted for 48 h. The half maximal stimulatory effect of TRH was 2 X 10(-10) M and the maximal effect was achieved at 10(-9) M TRH. When tumor cells were pretreated with various concentrations of triiodothyronine (T3), the PRL release was inhibited by 50% with 5 X 10(-11) M T3 and by 80% with 10(-9) M T3. Successive addition of TRH (10(-8) M) was unable to stimulate PRL release at any concentration of T3. The addition of 10(-8) M estradiol for up to 16 days either stimulated or had no effect upon the PRL basal release according to the cases. In all cases tested (n = 4), preincubation of the tumor cells with estradiol (10(-8) M) modified the inhibition of PRL release induced by bromocriptine with a half-inhibitory concentration displaced from 3 X 10(-11) M (control) to 3 X 10(-10) M (estradiol). These data demonstrate that the absence of TRH effect observed in some human prolactinomas is not linked to the absence of TRH receptor in such tumor cells. TRH responsiveness is always restored in the presence of dopamine (DA) at appropriate concentration. This TRH/DA interaction seems specific while not observed under T3 inhibition of PRL. Furthermore, estrogens, while presenting a variable stimulatory effect upon basal PRL, antagonize the dopaminergic inhibition of PRL release.  相似文献   

15.
The response of serum prolactin (PRL) to thyrotropin-releasing hormone (TRH) was evaluated by radioimmunoassay in 6 normal women and 44 breast cancer cases. They were divided into the following 5 groups: group 1:6 normal women; group 2:10 preoperative patients with early breast cancer; group 3:13 preoperative patients with advanced cancer; group 4:13 postoperative patients with no recurrence of cancer for more than 2 years; group 5:8 postoperative patients with cancer recurrence. The maximum increment of serum PRL levels following the administration of TRH was significantly higher in groups 2, 3 and 5 than in groups 1 and 4. These results indicate that patients with recurrent breast cancer have a higher PRL response to TRH than those without recurrence of cancer.  相似文献   

16.
An immunoelectron-microscopic and morphometric study was carried out on the anterior pituitary prolactin (PRL) cells of adult male Wistar rats treated with a combination of thyroidectomy and administration of L-thyroxine (T4) and/or synthetic thyrotropin-releasing hormone (TRH) in order to clarify the effects of changes in the hypothalamus-pituitary-thyroid axis on the ultrastructure and function of PRL cells. After thyroidectomy, PRL cells underwent atrophy and hypofunction of their cell organelles, but these changes tended to be restored to their normal level by T4 treatment. On the other hand, the administration of TRH to intact rats produced hypertrophy and hyperfunction in the PRL cells, although this treatment had no effect on the PRL cells of thyroidectomized rats. However, treatment with a combination of T4 and TRH had a strong effect and led to hypertrophy and hyperfunction in the PRL cells of thyroidectomized rats. Serum and pituitary PRL levels were measured by radioimmunoassay (RIA) for a comparison with the morphological results. They correlated well with the morphological changes. These results indicate that TRH stimulates PRL secretion in the presence of thyroid hormone, and that the thyroid hormone plays an important role in the basic maintenance of PRL cell function and its reactivity to TRH.  相似文献   

17.
Previous studies in Rhesus monkeys have demonstrated that a dopamine (DA) infusion rate of 0.1 microgram/kg X min induces peripheral DA levels similar to those measured in hypophysial stalk blood and normalizes serum prolactin (PRL) levels in stalk-transected animals. We therefore examined the effect of such DA infusion rate on basal and thyrotropin-releasing hormone (TRH)-stimulated PRL secretion in both normal cycling women and women with pathological hyperprolactinemia. 0.1 microgram/kg X min DA infusion fully normalized PRL serum levels in 8 normal cycling women whose endogenous catecholamine synthesis had been inhibited by alpha-methyl-p-tyrosine (AMPT) pretreatment. Furthermore, DA significantly reduced, but did not abolish, the rise in serum PRL concentrations induced by both acute 500 mg AMPT administration and 200 micrograms intravenous TRH injection in normal women. A significant reduction in serum PRL levels in response to 0.1 microgram/kg X min DA, similar to that observed in normal cycling women when expressed as a percentage of baseline PRL, was documented in 13 amenorrheic patients with TRH-unresponsive pathological hyperprolactinemia. However, a marked rise was observed in the serum PRL of the same patients when TRH was administered during the course of a 0.1-microgram/kg X min DA infusion. The PRL response to TRH was significantly higher during DA than in basal conditions in hyperprolactinemic patients, irrespective of whether this was expressed as an absolute increase (delta PRL 94.4 +/- 14.2 vs. 17.8 +/- 14.1 ng/ml, p less than 0.002) or a percent increase (delta% PRL 155.4 +/- 18.9 vs. 17.9 +/- 7.1, p less than 0.0005), and there was a significant linear correlation between the PRL decrements induced by DA and the subsequent PRL responses to TRH. These data would seem to show that the 0.1-microgram/kg X min DA infusion rate reduces basal PRL secretion and blunts, but does not abolish, the PRL response to both TRH and acute AMPT administration. The strong reduction in PRL secretion and the restoration of the PRL response to TRH by 0.1 microgram/kg X min DA infusion in high majority of hyperprolactinemic patients, seem to indicate that both PRL hypersecretion and abnormal PRL response to TRH in women with pathological hyperprolactinemia are due to a relative DA deficiency at the DA receptor site of the pituitary lactotrophs.  相似文献   

18.
In adult male Wistar rats submitted to a standardized noise stress, intravenous TRH induced a prolactin (PRL) secretory response. Prior IV naloxone administration not only lowered plasma PRL levels in those stressed rats but abolished also the stimulatory action of TRH. This effect was further studied by superfusion experiments on enriched PRL cell suspensions (70% lactotrophs) from female adult Wistar rats. Naloxone kept unaffected the basal PRL secretion but lowered significantly that induced by TRH. These experiments suggest a dual effect of naloxone on rat PRL secretion, one exerted on central opioid receptors lowering stress-related increased basal PRL levels, the other inhibiting the TRH-dependent PRL secretion exerted at the lactotroph level itself.  相似文献   

19.
A study was carried out in 10 patients with multiple pituitary hormone deficiencies to determine the response of thyroid-stimulating hormone (TSH) and prolactin (PRL) to thyrotropin-releasing hormone (TRH) and their suppressibility by treatment with triiodothyronine (T3) given at a dose of 60 microgram/day for 1 week. In 3 patients the basal tsh values were normal and in 7 patients, 2 of whom had not received regular thyroid replacement therapy, they were elevated. The response of TSH to TRH was normal in 6 patients and exaggerated in 4 (of these, 1 patient had not received previous substitution therapy and 2 had received only irregular treatment). The basal and stimulated levels of TSH were markedly suppressed by the treatment with T3. The basal PRL levels were normal in 7 and slightly elevated in 3 patients. The response of PRL to TRH stimulation was exaggerated in 2, normal in 6 and absent in 2 patients. The basal PRL levels were not suppressible by T3 treatment but in 4 patients this treatment reduced the PRL response to TRH stimulation. From these findings the following conclusions are drawn: (1) T3 suppresses TSH at the pituitary level, and (2) the hyperreactivity of TSH to TRH and the low set point of suppressibility are probably due to a lack of TRH in the type of patients studied.  相似文献   

20.
From results of the effect of synthetic pyroglutamyl-histidylprolineamide, pGlu-His-ProNH2 or TRH, in normal women and men the most compelling indirect evidence has been obtained which supportes the hypothesis that TRH may be a physiological regulator of both TSH and PRL. The minimum effective dose of TRH which stimulates TSH and PRL release in normal men and women is essentially the same. After the administration of TRH to normal subjects, there was always an increase of PRL as well as TSH. The proposed term prolactin-thyrotropin releasing hormone or PTRH rather than TRH may more precisely indicate the biological activities of pGlu-His-ProNH2 in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号